Suppr超能文献

HSSNet:一种用于在复杂背景下检测苹果叶部病害微小目标的端到端网络。

HSSNet: A End-to-End Network for Detecting Tiny Targets of Apple Leaf Diseases in Complex Backgrounds.

作者信息

Gao Xing, Tang Zhiwen, Deng Yubao, Hu Shipeng, Zhao Hongmin, Zhou Guoxiong

机构信息

College of Computer & Information Engineering, Central South University of Forestry and Technology, Changsha 410004, China.

出版信息

Plants (Basel). 2023 Jul 28;12(15):2806. doi: 10.3390/plants12152806.

Abstract

Apple leaf diseases are one of the most important factors that reduce apple quality and yield. The object detection technology based on deep learning can detect diseases in a timely manner and help automate disease control, thereby reducing economic losses. In the natural environment, tiny apple leaf disease targets (a resolution is less than 32 × 32 pixel) are easily overlooked. To address the problems of complex background interference, difficult detection of tiny targets and biased detection of prediction boxes that exist in standard detectors, in this paper, we constructed a tiny target dataset TTALDD-4 containing four types of diseases, which include Alternaria leaf spot, Frogeye leaf spot, Grey spot and Rust, and proposed the HSSNet detector based on the YOLOv7-tiny benchmark for professional detection of apple leaf disease tiny targets. Firstly, the H-SimAM attention mechanism is proposed to focus on the foreground lesions in the complex background of the image. Secondly, SP-BiFormer Block is proposed to enhance the ability of the model to perceive tiny targets of leaf diseases. Finally, we use the SIOU loss to improve the case of prediction box bias. The experimental results show that HSSNet achieves 85.04% mAP (mean average precision), 67.53% AR (average recall), and 83 FPS (frames per second). Compared with other standard detectors, HSSNet maintains high real-time detection speed with higher detection accuracy. This provides a reference for the automated control of apple leaf diseases.

摘要

苹果叶部病害是降低苹果品质和产量的最重要因素之一。基于深度学习的目标检测技术能够及时检测病害,有助于实现病害防治自动化,从而减少经济损失。在自然环境中,微小的苹果叶部病害目标(分辨率小于32×32像素)很容易被忽视。为了解决标准检测器中存在的复杂背景干扰、微小目标检测困难以及预测框检测偏差等问题,本文构建了一个包含四种病害的微小目标数据集TTALDD-4,这四种病害包括交链孢叶斑病、蛙眼叶斑病、灰斑病和锈病,并提出了基于YOLOv7-tiny基准的HSSNet检测器,用于专业检测苹果叶部病害微小目标。首先,提出了H-SimAM注意力机制,以聚焦图像复杂背景中的前景病变。其次,提出了SP-BiFormer模块,以增强模型感知叶部病害微小目标的能力。最后,使用SIOU损失来改善预测框偏差的情况。实验结果表明,HSSNet的平均精度均值(mAP)达到85.04%,平均召回率(AR)达到67.53%,每秒帧数(FPS)达到83。与其他标准检测器相比,HSSNet在保持高实时检测速度的同时具有更高的检测精度。这为苹果叶部病害的自动化防治提供了参考。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0ac2/10420854/202a6539e0dc/plants-12-02806-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验