Suppr超能文献

通过频域特征融合增强猕猴桃花朵授粉检测:一种农业监测的新方法。

Enhancing kiwifruit flower pollination detection through frequency domain feature fusion: a novel approach to agricultural monitoring.

作者信息

Pan Fei, Hu Mengdie, Duan Xuliang, Zhang Boda, Xiang Pengjun, Jia Lan, Zhao Xiaoyu, He Dawei

机构信息

College of Information Engineering, Sichuan Agricultural University, Ya'an, China.

Ya'an Digital Agricultural Engineering Technology Research Center, Sichuan Agricultural University, Ya'an, China.

出版信息

Front Plant Sci. 2024 Jul 25;15:1415884. doi: 10.3389/fpls.2024.1415884. eCollection 2024.

Abstract

The pollination process of kiwifruit flowers plays a crucial role in kiwifruit yield. Achieving accurate and rapid identification of the four stages of kiwifruit flowers is essential for enhancing pollination efficiency. In this study, to improve the efficiency of kiwifruit pollination, we propose a novel full-stage kiwifruit flower pollination detection algorithm named KIWI-YOLO, based on the fusion of frequency-domain features. Our algorithm leverages frequency-domain and spatial-domain information to improve recognition of contour-detailed features and integrates decision-making with contextual information. Additionally, we incorporate the Bi-Level Routing Attention (BRA) mechanism with C3 to enhance the algorithm's focus on critical areas, resulting in accurate, lightweight, and fast detection. The algorithm achieves a of 91.6% with only 1.8M parameters, the AP of the Female class and the Male class reaches 95% and 93.5%, which is an improvement of 3.8%, 1.2%, and 6.2% compared with the original algorithm. Furthermore, the Recall and F1-score of the algorithm are enhanced by 5.5% and 3.1%, respectively. Moreover, our model demonstrates significant advantages in detection speed, taking only 0.016s to process an image. The experimental results show that the algorithmic model proposed in this study can better assist the pollination of kiwifruit in the process of precision agriculture production and help the development of the kiwifruit industry.

摘要

猕猴桃花朵的授粉过程对猕猴桃产量起着至关重要的作用。实现对猕猴桃花朵四个阶段的准确快速识别对于提高授粉效率至关重要。在本研究中,为了提高猕猴桃授粉效率,我们基于频域特征融合提出了一种名为KIWI-YOLO的新型全阶段猕猴桃花朵授粉检测算法。我们的算法利用频域和空间域信息来提高对轮廓细节特征的识别,并将决策与上下文信息相结合。此外,我们将双层路由注意力(BRA)机制与C3相结合,以增强算法对关键区域的关注,从而实现准确、轻量级和快速的检测。该算法仅用180万个参数就达到了91.6%的 ,雌花类和雄花类的AP分别达到95%和93.5%,与原算法相比分别提高了3.8%、1.2%和6.2%。此外,该算法的召回率和F1分数分别提高了5.5%和3.1%。而且,我们的模型在检测速度方面具有显著优势,处理一幅图像仅需0.016秒。实验结果表明,本研究提出的算法模型能够在精准农业生产过程中更好地辅助猕猴桃授粉,助力猕猴桃产业发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b60a/11306074/117b0fad8819/fpls-15-1415884-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验