Tagandurdyyeva Nurjemal A, Trube Maxim A, Shemyakin Igor' O, Solomitskiy Denis N, Medvedev German V, Dresvyanina Elena N, Nashchekina Yulia A, Ivan'kova Elena M, Dobrovol'skaya Irina P, Kamalov Almaz M, Sukhorukova Elena G, Moskalyuk Olga A, Yudin Vladimir E
Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, Polytekhnicheskaya Str., 29, Saint Petersburg 195251, Russia.
Institute of Medicine, RUDN University, Miklukho-Maklaya Str., 6, Moscow 117198, Russia.
Polymers (Basel). 2023 Aug 7;15(15):3323. doi: 10.3390/polym15153323.
New tubular conduits have been developed for the regeneration of peripheral nerves and the repair of defects that are larger than 3 cm. The conduits consist of a combination of poly(L-lactide) nanofibers and chitosan composite fibers with chitin nanofibrils. In vitro studies were conducted to assess the biocompatibility of the conduits using human embryonic bone marrow stromal cells (FetMSCs). The studies revealed good adhesion and differentiation of the cells on the conduits just one day after cultivation. Furthermore, an in vivo study was carried out to evaluate motor-coordination disorders using the sciatic nerve functional index (SFI) assessment. The presence of chitosan monofibers and chitosan composite fibers with chitin nanofibrils in the conduit design increased the regeneration rate of the sciatic nerve, with an SFI value ranging from 76 to 83. The degree of recovery of nerve conduction was measured by the amplitude of M-response, which showed a 46% improvement. The conduit design imitates the oriented architecture of the nerve, facilitates electrical communication between the damaged nerve's ends, and promotes the direction of nerve growth, thereby increasing the regeneration rate.
新型管状导管已被开发用于周围神经的再生以及修复长度超过3厘米的缺损。这些导管由聚(L-丙交酯)纳米纤维、壳聚糖复合纤维与几丁质纳米原纤维组合而成。使用人胚胎骨髓基质细胞(FetMSCs)进行了体外研究,以评估导管的生物相容性。研究表明,培养仅一天后,细胞就在导管上表现出良好的黏附与分化。此外,还进行了一项体内研究,使用坐骨神经功能指数(SFI)评估来评价运动协调障碍。导管设计中壳聚糖单纤维以及含几丁质纳米原纤维的壳聚糖复合纤维的存在提高了坐骨神经的再生率,SFI值在76至83之间。通过M波幅来测量神经传导的恢复程度,结果显示改善了46%。导管设计模仿了神经的定向结构,促进受损神经两端之间的电信号传导,并引导神经生长方向,从而提高了再生率。