Suppr超能文献

采用实验设计控制缓解商业传感器芯片变异性的策略。

Strategies for Mitigating Commercial Sensor Chip Variability with Experimental Design Controls.

机构信息

Department of Chemistry, University of Kansas, Lawrence, KS 66047, USA.

Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.

出版信息

Sensors (Basel). 2023 Jul 26;23(15):6703. doi: 10.3390/s23156703.

Abstract

Surface plasmon resonance (SPR) is a popular real-time technique for the measurement of binding affinity and kinetics, and bench-top instruments combine affordability and ease of use with other benefits of the technique. Biomolecular ligands labeled with the 6xHis tag can be immobilized onto sensing surfaces presenting the Ni-nitrilotriacetic acid (NTA) functional group. While Ni-NTA immobilization offers many advantages, including the ability to regenerate and reuse the sensors, its use can lead to signal variability between experimental replicates. We report here a study of factors contributing to this variability using the Nicoya OpenSPR as a model system and suggest ways to control for those factors, increasing the reproducibility and rigor of the data. Our model ligand/analyte pairs were two ovarian cancer biomarker proteins (MUC16 and HE4) and their corresponding monoclonal antibodies. We observed a broad range of non-specific binding across multiple NTA chips. Experiments run on the same chips had more consistent results in ligand immobilization and analyte binding than experiments run on different chips. Further assessment showed that different chips demonstrated different maximum immobilizations for the same concentration of injected protein. We also show a variety of relationships between ligand immobilization level and analyte response, which we attribute to steric crowding at high ligand concentrations. Using this calibration to inform experimental design, researchers can choose protein concentrations for immobilization corresponding to the linear range of analyte response. We are the first to demonstrate calibration and normalization as a strategy to increase reproducibility and data quality of these chips. Our study assesses a variety of factors affecting chip variability, addressing a gap in knowledge about commercially available sensor chips. Controlling for these factors in the process of experimental design will minimize variability in analyte signal when using these important sensing platforms.

摘要

表面等离子体共振(SPR)是一种流行的实时技术,用于测量结合亲和力和动力学,台式仪器将可负担性和易用性与该技术的其他优势结合在一起。标记有 6xHis 标签的生物分子配体可以固定在呈现 Ni-亚氨二乙酸(NTA)官能团的传感表面上。虽然 Ni-NTA 固定化具有许多优点,包括能够再生和重复使用传感器,但它的使用会导致实验重复之间的信号变化。我们在这里报告了一项使用 Nicoya OpenSPR 作为模型系统研究导致这种变化的因素的研究,并提出了控制这些因素的方法,从而提高数据的可重复性和严格性。我们的模型配体/分析物对是两种卵巢癌生物标志物蛋白(MUC16 和 HE4)及其相应的单克隆抗体。我们观察到多个 NTA 芯片上存在广泛的非特异性结合。在同一芯片上运行的实验在配体固定化和分析物结合方面比在不同芯片上运行的实验具有更一致的结果。进一步评估表明,不同的芯片表现出相同浓度注入蛋白的最大固定化程度不同。我们还展示了配体固定化水平与分析物响应之间的各种关系,我们将其归因于高配体浓度下的空间拥挤。使用这种校准来指导实验设计,研究人员可以选择与分析物响应线性范围相对应的固定化蛋白浓度。我们是第一个证明校准和归一化为提高这些芯片的重现性和数据质量的策略的人。我们的研究评估了影响芯片变化的各种因素,填补了关于商业可用传感器芯片的知识空白。在实验设计过程中控制这些因素将最大限度地减少使用这些重要传感平台时分析物信号的变化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ce1/10422579/5cc79afb1ab8/sensors-23-06703-sch001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验