Suppr超能文献

比较爵士乐演奏者身体动作的同步性与他们的情绪。

Comparing Synchronicity in Body Movement among Jazz Musicians with Their Emotions.

机构信息

MIT Center for Collective Intelligence, Cambridge, MA 02142, USA.

Shanti Music Productions Renold & Co., 5012 Schönenwerd, Switzerland.

出版信息

Sensors (Basel). 2023 Jul 29;23(15):6789. doi: 10.3390/s23156789.

Abstract

This paper presents novel preliminary research that investigates the relationship between the flow of a group of jazz musicians, quantified through multi-person pose synchronization, and their collective emotions. We have developed a real-time software to calculate the physical synchronicity of team members by tracking the difference in arm, leg, and head movements using Lightweight OpenPose. We employ facial expression recognition to evaluate the musicians' collective emotions. Through correlation and regression analysis, we establish that higher levels of synchronized body and head movements correspond to lower levels of disgust, anger, sadness, and higher levels of joy among the musicians. Furthermore, we utilize 1-D CNNs to predict the collective emotions of the musicians. The model leverages 17 body synchrony keypoint vectors as features, resulting in a training accuracy of 61.47% and a test accuracy of 66.17%.

摘要

本文提出了一项新颖的初步研究,旨在调查通过多人姿态同步量化的一群爵士音乐家的流动与他们的集体情绪之间的关系。我们已经开发了一个实时软件,通过使用 Lightweight OpenPose 跟踪手臂、腿部和头部运动的差异来计算团队成员的身体同步性。我们采用面部表情识别来评估音乐家的集体情绪。通过相关和回归分析,我们确定更高水平的身体和头部运动同步性与音乐家的更低水平的厌恶、愤怒、悲伤和更高水平的喜悦相对应。此外,我们利用 1-D CNN 来预测音乐家的集体情绪。该模型利用 17 个身体同步关键点向量作为特征,训练准确率为 61.47%,测试准确率为 66.17%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb98/10422624/0d325ae9772b/sensors-23-06789-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验