Suppr超能文献

车载网络中使用射频识别系统的捕获感知密集标签识别

Capture-Aware Dense Tag Identification Using RFID Systems in Vehicular Networks.

作者信息

Xu Weijian, Song Zhongzhe, Sun Yanglong, Wang Yang, Lai Lianyou

机构信息

School of Ocean Information Engineering, Jimei University, Xiamen 361000, China.

Navigation Institute, Jimei University, Xiamen 361000, China.

出版信息

Sensors (Basel). 2023 Jul 29;23(15):6792. doi: 10.3390/s23156792.

Abstract

Passive radio-frequency identification (RFID) systems have been widely applied in different fields, including vehicle access control, industrial production, and logistics tracking, due to their ability to improve work quality and management efficiency at a low cost. However, in an intersection situation where tags are densely distributed with vehicle gathering, the wireless channel becomes extremely complex, and the readers on the roadside may only decode the information from the strongest tag due to the capture effect, resulting in tag misses and considerably reducing the performance of tag identification. Therefore, it is crucial to design an efficient and reliable tag-identification algorithm in order to obtain information from vehicle and cargo tags under adverse traffic conditions, ensuring the successful application of RFID technology. In this paper, we first establish a Nakagami- distributed channel capture model for RFID systems and provide an expression for the capture probability, where each channel is modeled as any relevant Nakagami- distribution. Secondly, an advanced capture-aware tag-estimation scheme is proposed. Finally, extensive Monte Carlo simulations show that the proposed algorithm has strong adaptability to circumstances for capturing under-fading channels and outperforms the existing algorithms in terms of complexity and reliability of tag identification.

摘要

无源射频识别(RFID)系统因其能够以低成本提高工作质量和管理效率,已在包括车辆门禁控制、工业生产和物流跟踪等不同领域得到广泛应用。然而,在标签密集分布且车辆聚集的交叉路口情况下,无线信道变得极其复杂,路边的阅读器可能会由于捕获效应而仅解码来自最强标签的信息,导致标签漏读,并大大降低标签识别性能。因此,设计一种高效可靠的标签识别算法至关重要,以便在不利的交通条件下从车辆和货物标签获取信息,确保RFID技术的成功应用。在本文中,我们首先为RFID系统建立了一个服从 Nakagami 分布的信道捕获模型,并给出了捕获概率的表达式,其中每个信道被建模为任何相关的 Nakagami 分布。其次,提出了一种先进的捕获感知标签估计方案。最后,大量的蒙特卡罗模拟表明,所提出的算法对衰落信道下的捕获情况具有很强的适应性,并且在标签识别的复杂度和可靠性方面优于现有算法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9229/10422256/1ef69af23dc8/sensors-23-06792-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验