Liu Gang, Wang Qi-Ang, Jiao Guiyue, Dang Pengyuan, Nie Guohao, Liu Zichen, Sun Junyu
School of Mechanics and Civil Engineering, China University of Mining and Technology, Xuzhou 221116, China.
State Key Laboratory for Geomechanics & Deep Underground Engineering, Xuzhou 221116, China.
Sensors (Basel). 2023 Aug 3;23(15):6925. doi: 10.3390/s23156925.
Strain-based condition evaluation has garnered as a crucial method for the structural health monitoring (SHM) of large-scale engineering structures. The use of traditional wired strain sensors becomes tedious and time-consuming due to their complex wiring operation, more workload, and instrumentation cost to collect sufficient data for condition state evaluation, especially for large-scale engineering structures. The advent of wireless and passive RFID technologies with high efficiency and inexpensive hardware equipment has brought a new era of next-generation intelligent strain monitoring systems for engineering structures. Thus, this study systematically summarizes the recent research progress of cutting-edge RFID strain sensing technologies. Firstly, this study introduces the importance of structural health monitoring and strain sensing. Then, RFID technology is demonstrated including RFID technology's basic working principle and system component composition. Further, the design and application of various kinds of RFID strain sensors in SHM are presented including passive RFID strain sensing technology, active RFID strain sensing technology, semi-passive RFID strain sensing technology, Ultra High-frequency RFID strain sensing technology, chipless RFID strain sensing technology, and wireless strain sensing based on multi-sensory RFID system, etc., expounding their advantages, disadvantages, and application status. To the authors' knowledge, the study initially provides a systematic comprehensive review of a suite of RFID strain sensing technology that has been developed in recent years within the context of structural health monitoring.
基于应变的状态评估已成为大型工程结构健康监测(SHM)的一种关键方法。由于传统有线应变传感器的布线操作复杂、工作量大且仪器成本高,要收集足够的数据用于状态评估,特别是对于大型工程结构,使用起来变得繁琐且耗时。无线和无源射频识别(RFID)技术的出现以及高效且廉价的硬件设备,为工程结构的下一代智能应变监测系统带来了新的时代。因此,本研究系统地总结了前沿RFID应变传感技术的最新研究进展。首先,本研究介绍了结构健康监测和应变传感的重要性。然后,阐述了RFID技术,包括RFID技术的基本工作原理和系统组成部分。此外,还介绍了各种RFID应变传感器在结构健康监测中的设计与应用,包括无源RFID应变传感技术、有源RFID应变传感技术、半无源RFID应变传感技术、超高频RFID应变传感技术、无芯片RFID应变传感技术以及基于多传感器RFID系统的无线应变传感等,阐述了它们的优缺点及应用现状。据作者所知,本研究首次在结构健康监测背景下,对近年来已开发的一系列RFID应变传感技术进行了系统全面的综述。