Suppr超能文献

基于神经网络的Wi-Fi指纹室内定位方法

Neural-Network-Based Localization Method for Wi-Fi Fingerprint Indoor Localization.

作者信息

Zhu Hui, Cheng Li, Li Xuan, Yuan Haiwen

机构信息

College of Electrical Information, Wuhan Institute of Technology, Wuhan 430205, China.

出版信息

Sensors (Basel). 2023 Aug 7;23(15):6992. doi: 10.3390/s23156992.

Abstract

Despite the high demand for Internet location service applications, Wi-Fi indoor localization often suffers from time- and labor-intensive data collection processes. This study proposes a novel indoor localization model that utilizes fingerprinting technology based on a convolutional neural network to address this issue. The aim is to enhance Wi-Fi indoor localization by streamlining the data collection process. The proposed indoor localization model leverages a 3D ray-tracing technique to simulate the wireless received signal strength intensity (RSSI) across the field. By incorporating this advanced technique, the model aims to improve the accuracy and efficiency of Wi-Fi indoor localization. In addition, an RSSI heatmap fingerprint dataset generated from the ray-tracing simulation is trained on the proposed indoor localization model. To optimize and evaluate the model's performance in real-world scenarios, experiments were conducted using simulated datasets obtained from the publicly available databases of UJIIndoorLoc and Wireless InSite. The results show that the new approach solves the problem of resource limitation while achieving a verification accuracy of up to 99.09%.

摘要

尽管对互联网定位服务应用的需求很高,但Wi-Fi室内定位往往面临耗时费力的数据收集过程。本研究提出了一种新颖的室内定位模型,该模型利用基于卷积神经网络的指纹识别技术来解决这一问题。目的是通过简化数据收集过程来增强Wi-Fi室内定位。所提出的室内定位模型利用三维光线追踪技术来模拟整个区域的无线接收信号强度(RSSI)。通过纳入这一先进技术,该模型旨在提高Wi-Fi室内定位的准确性和效率。此外,由光线追踪模拟生成的RSSI热图指纹数据集在提出的室内定位模型上进行训练。为了在实际场景中优化和评估模型性能,使用从UJIIndoorLoc和Wireless InSite的公开数据库获得的模拟数据集进行了实验。结果表明,新方法解决了资源限制问题,同时实现了高达99.09%的验证准确率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/418f/10422542/28efb2283a6c/sensors-23-06992-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验