Yoo Jaehyun
School of AI Convergence, Sungshin Women's University, 34 da-gil 2, Bomun-ro, Seongbuk-gu, Seoul 02844, Republic of Korea.
Sensors (Basel). 2024 Sep 1;24(17):5698. doi: 10.3390/s24175698.
Wi-Fi fingerprint indoor localization uses Wi-Fi signal strength measurements obtained from a number of access points. This method needs manual data collection across a positioning area and an annotation process to label locations to the measurement sets. To reduce the cost and effort, this paper proposes a Wi-Fi Semi-Supervised Generative Adversarial Network (SSGAN), which produces artificial but realistic trainable fingerprint data. The Wi-Fi SSGAN is based on a deep learning, which is extended from GAN in a semi-supervised learning manner. It is designed to create location-labeled Wi-Fi fingerprint data, which is different to unlabeled data generation by a normal GAN. Also, the proposed Wi-Fi SSGAN network includes a positioning model, so it does not need a external positioning method. When the Wi-Fi SSGAN is applied to a multi-story landmark localization, the experimental results demonstrate a 35% more accurate performance in comparison to a standard supervised deep neural network.
Wi-Fi指纹室内定位利用从多个接入点获得的Wi-Fi信号强度测量值。该方法需要在定位区域进行人工数据收集以及一个注释过程,以便为测量集标注位置。为了降低成本和工作量,本文提出了一种Wi-Fi半监督生成对抗网络(SSGAN),它能生成人工但逼真的可训练指纹数据。Wi-Fi SSGAN基于深度学习,是以半监督学习方式从GAN扩展而来。它旨在创建带有位置标签的Wi-Fi指纹数据,这与普通GAN生成未标记数据不同。此外,所提出的Wi-Fi SSGAN网络包含一个定位模型,因此不需要外部定位方法。当Wi-Fi SSGAN应用于多层地标定位时,实验结果表明,与标准监督深度神经网络相比,其性能提高了35%。