Suppr超能文献

一种基于Wi-Fi指纹识别的室内定位生成方法。

A Generative Method for Indoor Localization Using Wi-Fi Fingerprinting.

作者信息

Belmonte-Fernández Óscar, Sansano-Sansano Emilio, Caballer-Miedes Antonio, Montoliu Raúl, García-Vidal Rubén, Gascó-Compte Arturo

机构信息

Institute of New Imaging Technologies, Jaume I University, 12071 Castelló de la Plana, Spain.

出版信息

Sensors (Basel). 2021 Mar 30;21(7):2392. doi: 10.3390/s21072392.

Abstract

Indoor localization is an enabling technology for pervasive and mobile computing applications. Although different technologies have been proposed for indoor localization, Wi-Fi fingerprinting is one of the most used techniques due to the pervasiveness of Wi-Fi technology. Most Wi-Fi fingerprinting localization methods presented in the literature are discriminative methods. We present a generative method for indoor localization based on Wi-Fi fingerprinting. The Received Signal Strength Indicator received from a Wireless Access Point is modeled by a hidden Markov model. Unlike other algorithms, the use of a hidden Markov model allows ours to take advantage of the temporal autocorrelation present in the Wi-Fi signal. The algorithm estimates the user's location based on the hidden Markov model, which models the signal and the forward algorithm to determine the likelihood of a given time series of Received Signal Strength Indicators. The proposed method was compared with four other well-known Machine Learning algorithms through extensive experimentation with data collected in real scenarios. The proposed method obtained competitive results in most scenarios tested and was the best method in 17 of 60 experiments performed.

摘要

室内定位是普适计算和移动计算应用的一项支撑技术。尽管已经提出了不同的室内定位技术,但由于Wi-Fi技术的普及性,Wi-Fi指纹识别是最常用的技术之一。文献中提出的大多数Wi-Fi指纹识别定位方法都是判别式方法。我们提出了一种基于Wi-Fi指纹识别的室内定位生成式方法。从无线接入点接收到的接收信号强度指示符由隐马尔可夫模型建模。与其他算法不同,隐马尔可夫模型的使用使我们能够利用Wi-Fi信号中存在的时间自相关性。该算法基于隐马尔可夫模型估计用户位置,该模型对信号进行建模,并使用前向算法确定给定接收信号强度指示符时间序列的可能性。通过对实际场景中收集的数据进行广泛实验,将所提出的方法与其他四种著名的机器学习算法进行了比较。在所测试的大多数场景中,所提出的方法都取得了有竞争力的结果,并且在所进行的60次实验中的17次实验中是最佳方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验