Suppr超能文献

基于注意力机制语义分割模型的 Sentinel-2 图像作物分类。

Crop Mapping Based on Sentinel-2 Images Using Semantic Segmentation Model of Attention Mechanism.

机构信息

Department of Geography and Spatial Information Techniques, Ningbo University, Ningbo 315211, China.

College of Geography and Environmental Sciences, Hainan Normal University, Haikou 571158, China.

出版信息

Sensors (Basel). 2023 Aug 7;23(15):7008. doi: 10.3390/s23157008.

Abstract

Using remote sensing images to identify crop plots and estimate crop planting area is an important part of agricultural remote sensing monitoring. High-resolution remote sensing images can provide rich information regarding texture, tone, shape, and spectrum of ground objects. With the advancement of sensor and information technologies, it is now possible to categorize crops with pinpoint accuracy. This study defines crop mapping as a semantic segmentation problem; therefore, a deep learning method is proposed to identify the distribution of corn and soybean using the differences in the spatial and spectral features of crops. The study area is located in the southwest of the Great Lakes in the United States, where corn and soybean cultivation is concentrated. The proposed attention mechanism deep learning model, ASegNet, was trained and evaluated using three years of Sentinel-2 data, collected between 2019 and 2021. The experimental results show that this method is able to fully extract the spatial and spectral characteristics of crops, and its classification effect is significantly better than that of the baseline method, and it has better classification performance than other deep learning models. We cross verified the trained model on the test sets of different years through transfer learning in both spatiotemporal and spatial dimensions. Proving the effectiveness of the attention mechanism in the process of knowledge transfer, ASegNet showed better adaptability.

摘要

利用遥感图像识别作物地块并估算作物种植面积是农业遥感监测的重要组成部分。高分辨率遥感图像可以提供丰富的地面目标纹理、色调、形状和光谱信息。随着传感器和信息技术的进步,现在可以精确地对作物进行分类。本研究将作物制图定义为语义分割问题;因此,提出了一种深度学习方法,利用作物的空间和光谱特征差异来识别玉米和大豆的分布。研究区域位于美国五大湖的西南部,集中种植玉米和大豆。所提出的注意力机制深度学习模型 ASegNet 使用 2019 年至 2021 年间收集的三年 Sentinel-2 数据进行了训练和评估。实验结果表明,该方法能够充分提取作物的空间和光谱特征,其分类效果明显优于基线方法,并且比其他深度学习模型具有更好的分类性能。我们通过时空维度的迁移学习,在不同年份的测试集上对训练好的模型进行了交叉验证。证明了注意力机制在知识迁移过程中的有效性,ASegNet 表现出更好的适应性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e7b/10422268/d189e4e9096b/sensors-23-07008-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验