Suppr超能文献

CACPU-Net:受点特征约束的通道注意力U型网络用于作物类型映射。

CACPU-Net: Channel attention U-net constrained by point features for crop type mapping.

作者信息

Bian Yuan, Li LinHui, Jing WeiPeng

机构信息

The College of Information and Computer Engineering, Northeast Forestry University, Harbin, China.

出版信息

Front Plant Sci. 2023 Jan 4;13:1030595. doi: 10.3389/fpls.2022.1030595. eCollection 2022.

Abstract

Crop type mapping is an indispensable topic in the agricultural field and plays an important role in agricultural intelligence. In crop type mapping, most studies focus on time series models. However, in our experimental area, the images of the crop harvest stage can be obtained from single temporal remote sensing images. Only using single temporal data for crop type mapping can reduce the difficulty of dataset production. In addition, the model of single temporal crop type mapping can also extract the spatial features of crops more effectively. In this work, we linked crop type mapping with 2D semantic segmentation and designed CACPU-Net based on single-source and single-temporal autumn Sentinel-2 satellite images. First, we used a shallow convolutional neural network, U-Net, and introduced channel attention mechanism to improve the model's ability to extract spectral features. Second, we presented the Dice to compute loss together with cross-entropy to mitigate the effects of crop class imbalance. In addition, we designed the CP module to additionally focus on hard-to-classify pixels. Our experiment was conducted on BeiDaHuang YouYi of Heilongjiang Province, which mainly grows rice, corn, soybean, and other economic crops. On the dataset we collected, through the 10-fold cross-validation experiment under the 8:1:1 dataset splitting scheme, our method achieved 93.74% overall accuracy, higher than state-of-the-art models. Compared with the previous model, our improved model has higher classification accuracy on the parcel boundary. This study provides an effective end-to-end method and a new research idea for crop type mapping. The code and the trained model are available on https://github.com/mooneed/CACPU-Net.

摘要

作物类型映射是农业领域不可或缺的课题,在农业智能化中发挥着重要作用。在作物类型映射方面,大多数研究集中在时间序列模型上。然而,在我们的试验区,可以从单时相遥感影像中获取作物收获期的图像。仅使用单时相数据进行作物类型映射可以降低数据集制作的难度。此外,单时相作物类型映射模型还能更有效地提取作物的空间特征。在这项工作中,我们将作物类型映射与二维语义分割相联系,并基于单源单时相秋季哨兵 - 2 卫星影像设计了 CACPU - Net。首先,我们使用了一个浅层卷积神经网络 U - Net,并引入通道注意力机制来提高模型提取光谱特征的能力。其次,我们提出使用 Dice 与交叉熵一起计算损失,以减轻作物类别不平衡的影响。此外,我们设计了 CP 模块来额外关注难以分类的像素。我们的实验在黑龙江北大荒友谊地区进行,该地区主要种植水稻、玉米、大豆等经济作物。在我们收集的数据集上,通过 8:1:1 数据集划分方案下的 10 折交叉验证实验,我们的方法实现了 93.74% 的总体准确率,高于现有最先进的模型。与先前的模型相比,我们改进后的模型在地块边界上具有更高的分类准确率。本研究为作物类型映射提供了一种有效的端到端方法和新的研究思路。代码和训练好的模型可在 https://github.com/mooneed/CACPU - Net 上获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d4d/9845695/7be021d0d100/fpls-13-1030595-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验