Suppr超能文献

血浆膜蛋白-皮质肌动蛋白相互作用的多尺度成像和定量分析。

Multiscale imaging and quantitative analysis of plasma membrane protein-cortical actin interplay.

机构信息

Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas.

Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada.

出版信息

Biophys J. 2023 Sep 19;122(18):3798-3815. doi: 10.1016/j.bpj.2023.08.007. Epub 2023 Aug 10.

Abstract

The spatiotemporal organization of cell surface receptors is important for cell signaling. Cortical actin (CA), the subset of the actin cytoskeleton subjacent to the plasma membrane (PM), plays a large role in cell surface receptor organization. However, this has been shown largely through actin perturbation experiments, which raise concerns of nonspecific effects and preclude quantification of actin architecture and dynamics under unperturbed conditions. These limitations make it challenging to predict how changes in CA properties can affect receptor organization. To derive direct relationships between the architecture and dynamics of CA and the spatiotemporal organization of PM proteins, including cell surface receptors, we developed a multiscale imaging and computational analysis framework based on the integration of single-molecule imaging (SMI) of PM proteins and fluorescent speckle microscopy (FSM) of CA (combined: SMI-FSM) in the same live cell. SMI-FSM revealed differential relationships between PM proteins and CA based on the PM proteins' actin binding ability, diffusion type, and local CA density. Combining SMI-FSM with subcellular region analysis revealed differences in CA dynamics that were predictive of differences in PM protein mobility near ruffly cell edges versus closer to the cell center. SMI-FSM also highlighted the complexity of cell-wide actin perturbation, where we found that global changes in actin properties caused by perturbation were not necessarily reflected in the CA properties near PM proteins, and that the changes in PM protein properties upon perturbation varied based on the local CA environment. Given the widespread use of SMI as a method to study the spatiotemporal organization of PM proteins and the versatility of SMI-FSM, we expect it to be widely applicable to enable future investigation of the influence of CA architecture and dynamics on different PM proteins, especially in the context of actin-dependent cellular processes.

摘要

细胞表面受体的时空组织对于细胞信号转导很重要。皮质肌动蛋白(CA)是位于质膜(PM)下方的肌动蛋白细胞骨架的一个子集,在细胞表面受体组织中起着重要作用。然而,这主要是通过肌动蛋白扰动实验来证明的,这些实验引起了非特异性效应的担忧,并排除了在未受扰条件下对肌动蛋白结构和动力学进行定量的可能性。这些限制使得难以预测 CA 特性的变化如何影响受体组织。为了得出 CA 的结构和动力学与 PM 蛋白(包括细胞表面受体)的时空组织之间的直接关系,我们开发了一种多尺度成像和计算分析框架,该框架基于 PM 蛋白的单分子成像(SMI)和 CA 的荧光斑点显微镜(FSM)的整合(组合:SMI-FSM)在同一个活细胞中。SMI-FSM 根据 PM 蛋白的肌动蛋白结合能力、扩散类型和局部 CA 密度揭示了 PM 蛋白和 CA 之间的差异关系。将 SMI-FSM 与亚细胞区域分析相结合,揭示了 CA 动力学的差异,这些差异可预测在ruffly 细胞边缘附近与靠近细胞中心的 PM 蛋白的移动性差异。SMI-FSM 还突出了细胞范围肌动蛋白扰动的复杂性,我们发现,由于扰动引起的肌动蛋白特性的全局变化不一定反映在 PM 蛋白附近的 CA 特性中,并且在扰动时 PM 蛋白特性的变化根据局部 CA 环境而变化。鉴于 SMI 作为一种研究 PM 蛋白时空组织的方法的广泛应用以及 SMI-FSM 的多功能性,我们预计它将广泛适用于未来对 CA 结构和动力学对不同 PM 蛋白的影响的研究,特别是在依赖肌动蛋白的细胞过程的背景下。

相似文献

3

本文引用的文献

8
Actin-Membrane Release Initiates Cell Protrusions.肌动蛋白-膜释放启动细胞突起。
Dev Cell. 2020 Dec 21;55(6):723-736.e8. doi: 10.1016/j.devcel.2020.11.024. Epub 2020 Dec 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验