Suppr超能文献

一种基于源自胸骨上压力传感器的心肺信号的睡眠阶段估计算法。

A sleep stage estimation algorithm based on cardiorespiratory signals derived from a suprasternal pressure sensor.

作者信息

Cerina Luca, Overeem Sebastiaan, Papini Gabriele B, van Dijk Johannes P, Vullings Rik, van Meulen Fokke, Ross Marco, Cerny Andreas, Anderer Peter, Fonseca Pedro

机构信息

Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.

Center for Sleep Medicine, Kempenhaeghe, Heeze, The Netherlands.

出版信息

J Sleep Res. 2024 Apr;33(2):e14015. doi: 10.1111/jsr.14015. Epub 2023 Aug 12.

Abstract

Automatic estimation of sleep structure is an important aspect in moving sleep monitoring from clinical laboratories to people's homes. However, the transition to more portable systems should not happen at the expense of important physiological signals, such as respiration. Here, we propose the use of cardiorespiratory signals obtained by a suprasternal pressure (SSP) sensor to estimate sleep stages. The sensor is already used for diagnosis of sleep-disordered breathing (SDB) conditions, but besides respiratory effort it can detect cardiac vibrations transmitted through the trachea. We collected the SSP sensor signal in 100 adults (57 male) undergoing clinical polysomnography for suspected sleep disorders, including sleep apnea syndrome, insomnia, and movement disorders. Here, we separate respiratory effort and cardiac activity related signals, then input these into a neural network trained to estimate sleep stages. Using the original mixed signal the results show a moderate agreement with manual scoring, with a Cohen's kappa of 0.53 in Wake/N1-N2/N3/rapid eye movement sleep discrimination and 0.62 in Wake/Sleep. We demonstrate that decoupling the two signals and using the cardiac signal to estimate the instantaneous heart rate improves the process considerably, reaching an agreement of 0.63 and 0.71. Our proposed method achieves high accuracy, specificity, and sensitivity across different sleep staging tasks. We also compare the total sleep time calculated with our method against manual scoring, with an average error of -1.83 min but a relatively large confidence interval of ±55 min. Compact systems that employ the SSP sensor information-rich signal may enable new ways of clinical assessments, such as night-to-night variability in obstructive sleep apnea and other sleep disorders.

摘要

自动估计睡眠结构是将睡眠监测从临床实验室转移到人们家中的一个重要方面。然而,向更便携系统的转变不应以牺牲重要的生理信号(如呼吸)为代价。在此,我们建议使用由胸骨上压力(SSP)传感器获得的心肺信号来估计睡眠阶段。该传感器已用于诊断睡眠呼吸障碍(SDB)病症,但除了呼吸努力外,它还能检测通过气管传播的心脏振动。我们收集了100名因疑似睡眠障碍(包括睡眠呼吸暂停综合征、失眠和运动障碍)而接受临床多导睡眠图检查的成年人(57名男性)的SSP传感器信号。在此,我们分离出与呼吸努力和心脏活动相关的信号,然后将这些信号输入经过训练以估计睡眠阶段的神经网络。使用原始混合信号时,结果显示与人工评分有中等程度的一致性,在清醒/非快速眼动睡眠1期 - 非快速眼动睡眠2期 - 非快速眼动睡眠3期/快速眼动睡眠辨别中,科恩kappa系数为0.53,在清醒/睡眠辨别中为0.62。我们证明,将这两种信号解耦并使用心脏信号来估计瞬时心率可显著改善这一过程,一致性达到0.63和0.71。我们提出的方法在不同的睡眠分期任务中实现了高精度、特异性和敏感性。我们还将用我们的方法计算出的总睡眠时间与人工评分进行了比较,平均误差为 -1.83分钟,但置信区间相对较大,为±55分钟。采用SSP传感器信息丰富信号的紧凑型系统可能会带来新的临床评估方式,例如阻塞性睡眠呼吸暂停和其他睡眠障碍的夜间变异性评估。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验