Suppr超能文献

基于锆掺杂氧化铪忆容突触阵列的高效能多感官储层计算

Power-Efficient Multisensory Reservoir Computing Based on Zr-Doped HfO Memcapacitive Synapse Arrays.

作者信息

Pei Mengjiao, Zhu Ying, Liu Siyao, Cui Hangyuan, Li Yating, Yan Yang, Li Yun, Wan Changjin, Wan Qing

机构信息

National Laboratory of Solid-State Microstructures, School of Electronic Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China.

Yongjiang Laboratory (Y-LAB), Ningbo, Zhejiang, 315202, P. R. China.

出版信息

Adv Mater. 2023 Oct;35(41):e2305609. doi: 10.1002/adma.202305609. Epub 2023 Aug 25.

Abstract

Hardware implementation tailored to requirements in reservoir computing would facilitate lightweight and powerful temporal processing. Capacitive reservoirs would boost power efficiency due to their ultralow static power consumption but have not been experimentally exploited yet. Here, this work reports an oxide-based memcapacitive synapse (OMC) based on Zr-doped HfO (HZO) for a power-efficient and multisensory processing reservoir computing system. The nonlinearity and state richness required for reservoir computing could originate from the capacitively coupled polarization switching and charge trapping of hafnium-oxide-based devices. The power consumption (≈113.4 fJ per spike) and temporal processing versatility outperform most resistive reservoirs. This system is verified by common benchmark tasks, and it exhibits high accuracy (>94%) in recognizing multisensory information, including acoustic, electrophysiological, and mechanic modalities. As a proof-of-concept, a touchless user interface for virtual shopping based on the OMC-based reservoir computing system is demonstrated, benefiting from its interference-robust acoustic and electrophysiological perception. These results shed light on the development of highly power-efficient human-machine interfaces and machine-learning platforms.

摘要

针对储层计算需求定制的硬件实现将促进轻量级且强大的时间处理。电容性储层因其超低静态功耗将提高功率效率,但尚未得到实验验证。在此,这项工作报道了一种基于掺锆铪氧化物(HZO)的氧化物基忆阻器突触(OMC),用于高效能且多感官处理的储层计算系统。储层计算所需的非线性和状态丰富性可能源于基于铪氧化物的器件的电容耦合极化切换和电荷俘获。其功耗(每个脉冲约113.4飞焦)和时间处理通用性优于大多数电阻性储层。该系统通过常见基准任务得到验证,并且在识别包括声学、电生理和机械模态在内的多感官信息方面表现出高精度(>94%)。作为概念验证,展示了一种基于OMC的储层计算系统的用于虚拟购物的非接触式用户界面,这得益于其对干扰具有鲁棒性的声学和电生理感知。这些结果为高功率效率的人机界面和机器学习平台的发展提供了启示。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验