Suppr超能文献

基于铁电电容式存储器的电荷域内容可寻址存储器,用于可靠且节能的一次性学习。

Charge-domain content addressable memory based on ferroelectric capacitive memory for reliable and energy-efficient one-shot learning.

作者信息

Zhou Zuopu, Zhong Hongtao, Jiao Leming, Zheng Zijie, Yang Huazhong, Kämpfe Thomas, Ni Kai, Li Xueqing, Gong Xiao

机构信息

Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore.

Department of Electronic Engineering, Tsinghua University, Beijing, China.

出版信息

Nat Commun. 2025 Aug 28;16(1):8047. doi: 10.1038/s41467-025-63190-y.

Abstract

Non-volatile content addressable memories (NV-CAMs) accelerate memory augmented neural networks (MANNs) for brain-like efficient learning from a few examples or even one example. However, most existing NV-CAMs operate in current domain, posing challenges in reliable, low-power, and sensing-friendly Hamming distance (HD) computation. To address these challenges, this work proposes transferring the computation to charge domain using ferroelectric capacitive memory (FCM). For the first time, a charge-domain 2FCM CAM based on the inversion-type FCM is reported. By storing data as device capacitance, this CAM structure directly outputs HD as linear multi-level voltages, enabling simplified sensing processes and reduced peripheral costs. Its differential nature further exhibits immunity to device variation, ensuring accuracy in the computation of long data vectors. Parallel 16-bit HD computation using a fabricated 16 × 16 2FCM CAM array is experimentally demonstrated with record performance at array level, evidencing the superiority of charge-domain computation and showcasing tremendous potential for in-memory-search applications.

摘要

非易失性内容可寻址存储器(NV-CAM)可加速内存增强神经网络(MANN),从而能够从少量示例甚至单个示例中进行类似大脑的高效学习。然而,大多数现有的NV-CAM在电流域中运行,这在可靠、低功耗以及对传感友好的汉明距离(HD)计算方面带来了挑战。为应对这些挑战,这项工作提出使用铁电电容存储器(FCM)将计算转移到电荷域。首次报道了基于反转型FCM的电荷域2FCM CAM。通过将数据存储为器件电容,这种CAM结构直接将HD输出为线性多级电压,从而简化了传感过程并降低了外围成本。其差分特性进一步表现出对器件变化的免疫能力,确保了长数据向量计算的准确性。使用制造的16×16 2FCM CAM阵列进行的并行16位HD计算在实验中得到了验证,在阵列级别具有创纪录的性能,证明了电荷域计算的优越性,并展示了内存搜索应用的巨大潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7092/12394611/cb4078b57ce9/41467_2025_63190_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验