Ouyang Weilun, Zhang Qirui, Chen Jiangang, Luo Xiao, Wang Xuemei, Chen Yingying, Yang Fan, Nie Qi, Liu Qing, Liu Fucai
School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, No.2006, Xiyuan Ave, West Hi-Tech Zone, Chengdu, Sichuan, 611731, P. R. China.
State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, No.2006, Xiyuan Ave, West Hi-Tech Zone, Chengdu, Sichuan, 611731, P. R. China.
Adv Sci (Weinh). 2025 Aug;12(29):e2502694. doi: 10.1002/advs.202502694. Epub 2025 May 8.
Novel neuromorphic devices constructed from low-dimensional materials have demonstrated significant potential in visual perception and information processing. Colloidal quantum dots (QDs) exhibit strong light absorption and tunable band gaps, while 2D materials provide smooth interfaces and channels with superior charge carrier mobility. However, the potential of devices utilizing QDs as floating gates and 2D materials as channels remains largely underexplored. Herein, a floating-gate phototransistor based on the mixed-dimensional heterostructure of 0D-CsPbBr QDs and 2D-MoS few layer is introduced. By leveraging the optical advantages of 0D-QDs and the electrical properties of 2D materials, mixed-modal in-sensor reservoir computing (RC) is realized. Upon electrical/optical stimulation, the device demonstrates an on/off ratio of 10, over 7-bit multistates, nonlinear memory decay behavior, and dynamics with tunable time scales. Building upon these characteristics, the device enables mixed-modal RC using mixed-inputs of optical and electrical signals. Furthermore, accurate recognition of endangered species under extreme weather conditions is also demonstrated through audio-visual fusion. This study presents a compelling paradigm for utilizing the properties of different-dimensional materials to achieve mixed-modal information fusion and opens new pathways for mimicking biological multisensory fusion.
由低维材料构建的新型神经形态器件在视觉感知和信息处理方面已展现出巨大潜力。胶体量子点(QDs)具有强烈的光吸收和可调带隙,而二维材料则提供了具有卓越电荷载流子迁移率的光滑界面和通道。然而,利用量子点作为浮栅和二维材料作为通道的器件潜力在很大程度上仍未得到充分探索。在此,介绍了一种基于零维 - CsPbBr量子点和二维 - MoS少数层混合维异质结构的浮栅光电晶体管。通过利用零维量子点的光学优势和二维材料的电学特性,实现了混合模式的传感器内水库计算(RC)。在电/光刺激下,该器件展现出10的开/关比、超过7位的多态、非线性记忆衰减行为以及具有可调时间尺度的动力学。基于这些特性,该器件能够使用光和电信号的混合输入实现混合模式RC。此外,还通过视听融合展示了在极端天气条件下对濒危物种的准确识别。本研究提出了一个利用不同维度材料特性实现混合模式信息融合的引人注目的范例,并为模仿生物多感官融合开辟了新途径。