Suppr超能文献

机器学习辅助和智能手机集成的均相电化学发光生物传感器平台,用于样品回答检测各种人体代谢物。

Machine learning assisted and smartphone integrated homogeneous electrochemiluminescence biosensor platform for sample to answer detection of various human metabolites.

机构信息

MEMS, Microfluidics and Nanoelectronics (MMNE) Lab, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Hyderabad 500078, India; Department of Electrical and Electronics Engineering, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Hyderabad 500078, India.

MEMS, Microfluidics and Nanoelectronics (MMNE) Lab, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Hyderabad 500078, India.

出版信息

Biosens Bioelectron. 2023 Oct 15;238:115582. doi: 10.1016/j.bios.2023.115582. Epub 2023 Aug 8.

Abstract

The sensitive and accurate detection of glucose and lactate is essential for early diagnosis and effective management of diabetes complications. Herein, a 3D Printed ECL imaging system integrated with a Smartphone has been demonstrated to advance the traditional ECL to make a portable, affordable, and turnkey point-of-care solution to detect various human metabolites. A universal cross-platform application was introduced for analyzing ECL emitted signals to automate the whole detection process for real-time monitoring and rapid diagnostics. The developed ECL system was successfully applied and validated for detecting glucose and lactate using a single-electrode ECL biosensing platform. For glucose and lactate detection, the device showed a linear range from 0.1 mM to 1 mM and 0.1 mM-4 mM with a detection limit (LoD) of 0.04 mM and 0.1 mM, and a quantification limit (LoQ) of 0.142 mM and 0.342 mM, respectively. The developed method was evaluated for device stability, accuracy, interference, and real sample analysis. Furthermore, to assist in selecting the accurate and economic ECL sensing platform, SE-ECL devices fabricated via different fabrication approaches such as Laser-Induced Graphene, Screen Printing, and 3D Printing are studied for the conductivity of electrode and its significance on ECL signal. It was observed that emitted ECL signal is independent of the electrical conductivity for the same concentration of analytes. The findings suggested that the developed miniaturized point-of-care ECL platform would be a comprehensive and integrated solution for detecting other human metabolites and have the potential to be used in clinical applications.

摘要

对葡萄糖和乳酸的灵敏、准确检测对于糖尿病并发症的早期诊断和有效管理至关重要。在此,展示了一种集成了智能手机的 3D 打印电化学发光(ECL)成像系统,该系统将传统的 ECL 推进到一个便携式、经济实惠且即插即用的即时护理点解决方案,以检测各种人体代谢物。引入了一种通用的跨平台应用程序来分析 ECL 发射信号,以实现整个检测过程的自动化,从而进行实时监测和快速诊断。所开发的 ECL 系统已成功应用于使用单电极 ECL 生物传感平台检测葡萄糖和乳酸,并进行了验证。对于葡萄糖和乳酸检测,该设备在 0.1 mM 至 1 mM 和 0.1 mM-4 mM 的范围内显示出线性范围,检测限(LoD)分别为 0.04 mM 和 0.1 mM,定量限(LoQ)分别为 0.142 mM 和 0.342 mM。该方法用于评估设备稳定性、准确性、干扰和实际样品分析。此外,为了帮助选择准确且经济的 ECL 传感平台,研究了通过不同制造方法(例如激光诱导石墨烯、丝网印刷和 3D 打印)制造的 SE-ECL 器件的电极电导率及其对 ECL 信号的意义。结果表明,对于相同浓度的分析物,发射的 ECL 信号与电导率无关。研究结果表明,所开发的小型即时护理 ECL 平台将成为检测其他人体代谢物的综合解决方案,并且有可能用于临床应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验