Suppr超能文献

DoFE:面向领域的特征嵌入在未见数据集上的通用眼底图像分割。

DoFE: Domain-Oriented Feature Embedding for Generalizable Fundus Image Segmentation on Unseen Datasets.

出版信息

IEEE Trans Med Imaging. 2020 Dec;39(12):4237-4248. doi: 10.1109/TMI.2020.3015224. Epub 2020 Nov 30.

Abstract

Deep convolutional neural networks have significantly boosted the performance of fundus image segmentation when test datasets have the same distribution as the training datasets. However, in clinical practice, medical images often exhibit variations in appearance for various reasons, e.g., different scanner vendors and image quality. These distribution discrepancies could lead the deep networks to over-fit on the training datasets and lack generalization ability on the unseen test datasets. To alleviate this issue, we present a novel Domain-oriented Feature Embedding (DoFE) framework to improve the generalization ability of CNNs on unseen target domains by exploring the knowledge from multiple source domains. Our DoFE framework dynamically enriches the image features with additional domain prior knowledge learned from multi-source domains to make the semantic features more discriminative. Specifically, we introduce a Domain Knowledge Pool to learn and memorize the prior information extracted from multi-source domains. Then the original image features are augmented with domain-oriented aggregated features, which are induced from the knowledge pool based on the similarity between the input image and multi-source domain images. We further design a novel domain code prediction branch to infer this similarity and employ an attention-guided mechanism to dynamically combine the aggregated features with the semantic features. We comprehensively evaluate our DoFE framework on two fundus image segmentation tasks, including the optic cup and disc segmentation and vessel segmentation. Our DoFE framework generates satisfying segmentation results on unseen datasets and surpasses other domain generalization and network regularization methods.

摘要

深度卷积神经网络在眼底图像分割方面取得了显著的成果,当测试数据集与训练数据集具有相同分布时。然而,在临床实践中,由于各种原因,医疗图像往往会出现外观上的变化,例如不同的扫描仪供应商和图像质量。这些分布差异可能导致深度网络过度拟合训练数据集,缺乏对未见测试数据集的泛化能力。为了解决这个问题,我们提出了一种新颖的面向领域的特征嵌入(DoFE)框架,通过从多个源域中探索知识来提高 CNN 在未见目标域上的泛化能力。我们的 DoFE 框架通过从多源域中学习和记忆先验信息,动态地丰富图像特征,从而使语义特征更具辨别力。具体来说,我们引入了一个领域知识池,以学习和记忆从多源域中提取的先验信息。然后,通过知识池基于输入图像和多源域图像之间的相似性,将原始图像特征与面向领域的聚合特征进行扩充。我们进一步设计了一种新颖的域码预测分支来推断这种相似性,并采用注意力引导机制动态地将聚合特征与语义特征相结合。我们在两个眼底图像分割任务,包括视杯和盘分割以及血管分割上全面评估了我们的 DoFE 框架。我们的 DoFE 框架在未见数据集上生成了令人满意的分割结果,超过了其他领域泛化和网络正则化方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验