Suppr超能文献

使用带有图形用户界面的多重可解释机器学习对玄武岩纤维增强混凝土的强度特性进行建模。

Modeling strength characteristics of basalt fiber reinforced concrete using multiple explainable machine learning with a graphical user interface.

作者信息

Kulasooriya W K V J B, Ranasinghe R S S, Perera Udara Sachinthana, Thisovithan P, Ekanayake I U, Meddage D P P

机构信息

Department of Civil Engineering, Sri Lanka Institute of Information Technology, Malabe, Sri Lanka.

Department of Computer Engineering, University of Peradeniya, Kandy, Sri Lanka.

出版信息

Sci Rep. 2023 Aug 12;13(1):13138. doi: 10.1038/s41598-023-40513-x.

Abstract

This study investigated the importance of applying explainable artificial intelligence (XAI) on different machine learning (ML) models developed to predict the strength characteristics of basalt-fiber reinforced concrete (BFRC). Even though ML is widely adopted in strength prediction in concrete, the black-box nature of predictions hinders the interpretation of results. Among several attempts to overcome this limitation by using explainable AI, researchers have employed only a single explanation method. In this study, we used three tree-based ML models (Decision tree, Gradient Boosting tree, and Light Gradient Boosting Machine) to predict the mechanical strength characteristics (compressive strength, flexural strength, and tensile strength) of basal fiber reinforced concrete (BFRC). For the first time, we employed two explanation methods (Shapley additive explanations (SHAP) and local interpretable model-agnostic explanations (LIME)) to provide explanations for all models. These explainable methods reveal the underlying decision-making criteria of complex machine learning models, improving the end user's trust. The comparison highlights that tree-based models obtained good accuracy in predicting strength characteristics yet, their explanations were different either by the magnitude of feature importance or the order of importance. This disagreement pushes towards complicated decision-making based on ML predictions which further stresses (1) extending XAI-based research in concrete strength predictions, and (2) involving domain experts to evaluate XAI results. The study concludes with the development of a "user-friendly computer application" which enables quick strength prediction of basalt fiber reinforced concrete (BFRC).

摘要

本研究调查了将可解释人工智能(XAI)应用于为预测玄武岩纤维增强混凝土(BFRC)强度特性而开发的不同机器学习(ML)模型的重要性。尽管ML在混凝土强度预测中被广泛采用,但预测的黑箱性质阻碍了结果的解释。在通过使用可解释人工智能克服这一局限性的几次尝试中,研究人员仅采用了单一的解释方法。在本研究中,我们使用了三种基于树的ML模型(决策树、梯度提升树和轻梯度提升机)来预测玄武岩纤维增强混凝土(BFRC)的力学强度特性(抗压强度、抗弯强度和抗拉强度)。我们首次采用了两种解释方法(Shapley加法解释(SHAP)和局部可解释模型无关解释(LIME))为所有模型提供解释。这些可解释方法揭示了复杂机器学习模型潜在的决策标准,提高了最终用户的信任度。比较结果突出表明,基于树的模型在预测强度特性方面取得了良好的准确性,但其解释在特征重要性的大小或重要性顺序方面存在差异。这种不一致促使基于ML预测进行复杂的决策,这进一步强调了(1)在混凝土强度预测中扩展基于XAI的研究,以及(2)让领域专家参与评估XAI结果。该研究最后开发了一个“用户友好的计算机应用程序”,该程序能够快速预测玄武岩纤维增强混凝土(BFRC)的强度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c86/10423212/75a020d4364d/41598_2023_40513_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验