Suppr超能文献

在存在无效工具变量的情况下,使用 GWAS 汇总数据推断因果代谢物网络。

Inference of causal metabolite networks in the presence of invalid instrumental variables with GWAS summary data.

机构信息

Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, USA.

School of Statistics, University of Minnesota, Minneapolis, Minnesota, USA.

出版信息

Genet Epidemiol. 2023 Dec;47(8):585-599. doi: 10.1002/gepi.22535. Epub 2023 Aug 13.

Abstract

We propose structural equation models (SEMs) as a general framework to infer causal networks for metabolites and other complex traits. Traditionally SEMs are used only for individual-level data under the assumption that all instrumental variables (IVs) are valid. To overcome these limitations, we propose both one- and two-sample approaches for causal network inference based on SEMs that can: (1) perform causal analysis and discover causal relationships among multiple traits; (2) account for the possible presence of some invalid IVs; (3) allow for data analysis using only genome-wide association studies (GWAS) summary statistics when individual-level data are not available; (4) consider the possibility of bidirectional relationships between traits. Our method employs a simple stepwise selection to identify invalid IVs, thus avoiding false positives while possibly increasing true discoveries based on two-stage least squares (2SLS). We use both real GWAS data and simulated data to demonstrate the superior performance of our method over the standard 2SLS/SEMs. For real data analysis, our proposed approach is applied to a human blood metabolite GWAS summary data set to uncover putative causal relationships among the metabolites; we also identify some metabolites (putative) causal to Alzheimer's disease (AD), which, along with the inferred causal metabolite network, suggest some possible pathways of metabolites involved in AD.

摘要

我们提出结构方程模型(SEMs)作为一种推断代谢物和其他复杂特征因果网络的通用框架。传统上,仅在假设所有工具变量(IVs)都有效的情况下,才将 SEMs 用于个体水平数据。为了克服这些限制,我们提出了基于 SEMs 的两种单样本和双样本方法来进行因果网络推断,这些方法可以:(1)进行因果分析并发现多个特征之间的因果关系;(2)可以考虑到一些无效 IVs 的存在;(3)当无法获得个体水平数据时,可以仅使用全基因组关联研究(GWAS)汇总统计信息进行数据分析;(4)考虑特征之间双向关系的可能性。我们的方法采用简单的逐步选择来识别无效 IVs,从而避免假阳性,同时可能根据两阶段最小二乘法(2SLS)增加真实发现。我们使用真实的 GWAS 数据和模拟数据来证明我们的方法优于标准的 2SLS/SEMs。对于真实数据分析,我们提出的方法应用于人类血液代谢物 GWAS 汇总数据集,以揭示代谢物之间的潜在因果关系;我们还确定了一些代谢物(假定)与阿尔茨海默病(AD)有关,这与推断出的因果代谢物网络一起,提示了 AD 中涉及的代谢物的一些可能途径。

相似文献

3
Some statistical consideration in transcriptome-wide association studies.全转录组关联研究中的一些统计考虑。
Genet Epidemiol. 2020 Apr;44(3):221-232. doi: 10.1002/gepi.22274. Epub 2019 Dec 10.
6
Statistical power of transcriptome-wide association studies.转录组关联研究的统计功效。
Genet Epidemiol. 2022 Dec;46(8):572-588. doi: 10.1002/gepi.22491. Epub 2022 Jun 29.

本文引用的文献

4
Fine-mapping from summary data with the "Sum of Single Effects" model.基于“单一效应总和”模型的汇总数据精细定位。
PLoS Genet. 2022 Jul 19;18(7):e1010299. doi: 10.1371/journal.pgen.1010299. eCollection 2022 Jul.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验