Suppr超能文献

利用全基因组关联研究(GWAS)汇总数据在存在相关多效性的情况下对双向因果关系进行稳健推断。

Robust inference of bi-directional causal relationships in presence of correlated pleiotropy with GWAS summary data.

作者信息

Xue Haoran, Pan Wei

机构信息

Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, United States of America.

出版信息

PLoS Genet. 2022 May 16;18(5):e1010205. doi: 10.1371/journal.pgen.1010205. eCollection 2022 May.

Abstract

To infer a causal relationship between two traits, several correlation-based causal direction (CD) methods have been proposed with the use of SNPs as instrumental variables (IVs) based on GWAS summary data for the two traits; however, none of the existing CD methods can deal with SNPs with correlated pleiotropy. Alternatively, reciprocal Mendelian randomization (MR) can be applied, which however may perform poorly in the presence of (unknown) invalid IVs, especially for bi-directional causal relationships. In this paper, first, we propose a CD method that performs better than existing CD methods regardless of the presence of correlated pleiotropy. Second, along with a simple but yet effective IV screening rule, we propose applying a closely related and state-of-the-art MR method in reciprocal MR, showing its almost identical performance to that of the new CD method when their model assumptions hold; however, if the modeling assumptions are violated, the new CD method is expected to better control type I errors. Notably bi-directional causal relationships impose some unique challenges beyond those for uni-directional ones, and thus requiring special treatments. For example, we point out for the first time several scenarios where a bi-directional relationship, but not a uni-directional one, can unexpectedly cause the violation of some weak modeling assumptions commonly required by many robust MR methods. We also offer some numerical support and a modeling justification for the application of our new methods (and more generally MR) to binary traits. Finally we applied the proposed methods to 12 risk factors and 4 common diseases, confirming mostly well-known uni-directional causal relationships, while identifying some novel and plausible bi-directional ones such as between body mass index and type 2 diabetes (T2D), and between diastolic blood pressure and stroke.

摘要

为了推断两个性状之间的因果关系,基于全基因组关联研究(GWAS)的两个性状汇总数据,人们提出了几种基于相关性的因果方向(CD)方法,使用单核苷酸多态性(SNP)作为工具变量(IV);然而,现有的CD方法都无法处理具有相关多效性的SNP。另外,可以应用反向孟德尔随机化(MR),但在存在(未知的)无效IV的情况下,其表现可能较差,尤其是对于双向因果关系。在本文中,首先,我们提出了一种CD方法,无论是否存在相关多效性,该方法都比现有CD方法表现更好。其次,结合一个简单但有效的IV筛选规则,我们建议在反向MR中应用一种密切相关且最先进的MR方法,当它们的模型假设成立时,该方法与新的CD方法表现几乎相同;然而,如果违反了建模假设,新的CD方法预计能更好地控制I型错误。值得注意的是,双向因果关系带来了一些单向因果关系之外的独特挑战,因此需要特殊处理。例如,我们首次指出了几种情况,在这些情况下,双向关系而非单向关系会意外导致许多稳健MR方法通常要求的一些弱建模假设被违反。我们还为将我们的新方法(以及更广泛的MR)应用于二元性状提供了一些数值支持和建模依据。最后,我们将所提出的方法应用于12种风险因素和4种常见疾病,证实了大多是众所周知的单向因果关系,同时识别出一些新的且合理的双向因果关系,如体重指数与2型糖尿病(T2D)之间,以及舒张压与中风之间的关系。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b631/9135345/8e87810e4fc0/pgen.1010205.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验