Suppr超能文献

从睡眠脑电图多变量预测认知表现。

Multivariate prediction of cognitive performance from the sleep electroencephalogram.

机构信息

Semmelweis University, Institute of Behavioural Sciences, Budapest, Hungary.

Semmelweis University, Institute of Behavioural Sciences, Budapest, Hungary.

出版信息

Neuroimage. 2023 Oct 1;279:120319. doi: 10.1016/j.neuroimage.2023.120319. Epub 2023 Aug 12.

Abstract

Human cognitive performance is a key function whose biological foundations have been partially revealed by genetic and brain imaging studies. The sleep electroencephalogram (EEG) is tightly linked to structural and functional features of the central nervous system and serves as another promising biomarker. We used data from MrOS, a large cohort of older men and cross-validated regularized regression to link sleep EEG features to cognitive performance in cross-sectional analyses. In independent validation samples 2.5-10% of variance in cognitive performance can be accounted for by sleep EEG features, depending on the covariates used. Demographic characteristics account for more covariance between sleep EEG and cognition than health variables, and consequently reduce this association by a greater degree, but even with the strictest covariate sets a statistically significant association is present. Sigma power in NREM and beta power in REM sleep were associated with better cognitive performance, while theta power in REM sleep was associated with worse performance, with no substantial effect of coherence and other sleep EEG metrics. Our findings show that cognitive performance is associated with the sleep EEG (r = 0.283), with the strongest effect ascribed to spindle-frequency activity. This association becomes weaker after adjusting for demographic (r = 0.186) and health variables (r = 0.155), but its resilience to covariate inclusion suggest that it also partially reflects trait-like differences in cognitive ability.

摘要

人类认知表现是一项关键功能,其生物学基础已部分通过遗传和脑成像研究揭示。睡眠脑电图(EEG)与中枢神经系统的结构和功能特征密切相关,是另一个有前途的生物标志物。我们使用了 MrOS 数据,这是一个大型老年男性队列,并通过正则化回归交叉验证,将睡眠 EEG 特征与横断面分析中的认知表现联系起来。在独立验证样本中,睡眠 EEG 特征可以解释认知表现方差的 2.5-10%,具体取决于所使用的协变量。人口统计学特征在睡眠 EEG 和认知之间的相关性比健康变量更高,因此通过更大程度地减少这种相关性来降低这种关联,但即使使用最严格的协变量集,也存在统计学上显著的关联。NREM 中的西格玛功率和 REM 睡眠中的β功率与更好的认知表现相关,而 REM 睡眠中的θ功率与较差的表现相关,相干性和其他睡眠 EEG 指标没有实质性影响。我们的研究结果表明,认知表现与睡眠 EEG 相关(r=0.283),其最强的影响归因于纺锤波频率活动。在调整人口统计学(r=0.186)和健康变量(r=0.155)后,这种关联变得较弱,但协变量纳入的弹性表明,它也部分反映了认知能力的特质差异。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ff65/10661862/1369eb24a864/nihms-1942284-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验