Suppr超能文献

使用多元线性回归和神经网络对口腔健康草药医学知识进行建模。

Modeling of Knowledge Toward Herbal Medicine for Oral Health Using Multiple Linear Regression and Neural Network.

作者信息

Tabnjh Abedelmalek, W Ahmad Wan Muhamad Amir, Hasan Ruhaya

机构信息

Dental Sciences, Universiti Sains Malaysia, Kelantan, MYS.

Applied Dental Sciences, Jordan University of Science and Technology, Irbid, JOR.

出版信息

Cureus. 2023 Jul 12;15(7):e41790. doi: 10.7759/cureus.41790. eCollection 2023 Jul.

Abstract

Background and goals Herbal medicine is used to treat a variety of oral health problems. Therefore, it is essential to comprehend it fully. To determine whether the amount used is risky, it is crucial to understand the dosages of medicinal plants. Before performing multiple linear regression (MLR) modeling, this paper uses the multilayer feedforward (MLFF) neural network (NN) technique to propose the variable selection. A data set with socio-demographic variables for dental staff and herbal medicine related to oral health knowledge score (KS) was chosen to demonstrate the design-build methodology. Materials and methods It was discovered that the KS is significantly related to the sex, age, income, occupation, and practice score (PS) at the first stage of the selection process, where all the variables were screened for their clinical importance. These five variables are chosen and used as inputs for the MLFF model by considering the level of significance, alpha = 0.05. Then, using the best variable discovered by the MLFF process, the MLR is applied. Results The performance of MLFF was evaluated using the mean squared error (MSE). MSE measures how far our estimates are off from the actual results. The MLFF's smallest MSE indicates the model's ideal combination of variable selection. Conclusion This study showed that using MLFF would help confirm the selected independent variables for MLR. In addition, KS level is more correlated with occupation, PS, and sex than with age and income. Moreover, this model could be used practically for any dataset. with the same criteria.

摘要

背景与目标 草药被用于治疗多种口腔健康问题。因此,全面理解它至关重要。为了确定使用量是否存在风险,了解药用植物的剂量至关重要。在进行多元线性回归(MLR)建模之前,本文使用多层前馈(MLFF)神经网络(NN)技术进行变量选择。选择了一个包含牙科工作人员社会人口统计学变量以及与口腔健康知识得分(KS)相关的草药数据集来展示设计-构建方法。

材料与方法 在选择过程的第一阶段,发现KS与性别、年龄、收入、职业和实践得分(PS)显著相关,在该阶段对所有变量的临床重要性进行了筛选。通过考虑显著性水平α = 0.05,选择这五个变量并将其用作MLFF模型的输入。然后,使用MLFF过程中发现的最佳变量应用MLR。

结果 使用均方误差(MSE)评估MLFF的性能。MSE衡量我们的估计与实际结果的偏差程度。MLFF的最小MSE表明了模型变量选择的理想组合。

结论 本研究表明,使用MLFF有助于确定MLR中选定的自变量。此外,KS水平与职业、PS和性别之间的相关性高于与年龄和收入的相关性。而且,该模型可实际应用于任何具有相同标准的数据集。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ffc5/10421645/a646c3d0ce77/cureus-0015-00000041790-i01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验