Gosch Vitus, Villringer Kersten, Galinovic Ivana, Ganeshan Ramanan, Piper Sophie K, Fiebach Jochen B, Khalil Ahmed
Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
Institute of Medical Informatics, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
Front Neurol. 2023 Jul 27;14:1203241. doi: 10.3389/fneur.2023.1203241. eCollection 2023.
Automated lesion segmentation is increasingly used in acute ischemic stroke magnetic resonance imaging (MRI). We explored in detail the performance of apparent diffusion coefficient (ADC) thresholding for delineating baseline diffusion-weighted imaging (DWI) lesions.
Retrospective, exploratory analysis of the prospective observational single-center 1000Plus study from September 2008 to June 2013 (clinicaltrials.org; NCT00715533). We built a fully automated lesion segmentation algorithm using a fixed ADC threshold (≤620 × 10-6 mm/s) to delineate the baseline DWI lesion and analyzed its performance compared to manual assessments. Diagnostic capabilities of best possible ADC thresholds were investigated using receiver operating characteristic curves. Influential patient factors on ADC thresholding techniques' performance were studied by conducting multiple linear regression.
108 acute ischemic stroke patients were selected for analysis. The median Dice coefficient for the algorithm was 0.43 (IQR 0.20-0.64). Mean ADC values in the DWI lesion ( = -0.68, < 0.001) and DWI lesion volumes ( = 0.29, < 0.001) predicted performance. Optimal individual ADC thresholds differed between subjects with a median of ≤691 × 10 mm/s (IQR ≤660-750 × 10 mm/s). Mean ADC values in the DWI lesion ( = -0.96, < 0.001) and mean ADC values in the brain parenchyma ( = 0.24, < 0.001) were associated with the performance of individual thresholds.
The performance of ADC thresholds for delineating acute stroke lesions varies substantially between patients. It is influenced by factors such as lesion size as well as lesion and parenchymal ADC values. Considering the inherent noisiness of ADC maps, ADC threshold-based automated delineation of very small lesions is not reliable.
自动病变分割在急性缺血性脑卒中磁共振成像(MRI)中应用越来越广泛。我们详细探讨了表观扩散系数(ADC)阈值化在描绘基线扩散加权成像(DWI)病变方面的性能。
对2008年9月至2013年6月进行的前瞻性观察性单中心1000Plus研究(clinicaltrials.org;NCT00715533)进行回顾性探索性分析。我们构建了一种全自动病变分割算法,使用固定的ADC阈值(≤620×10⁻⁶mm²/s)来描绘基线DWI病变,并将其性能与手动评估进行比较。使用受试者工作特征曲线研究最佳可能ADC阈值的诊断能力。通过进行多元线性回归研究影响ADC阈值化技术性能的患者因素。
选择108例急性缺血性脑卒中患者进行分析。该算法的中位Dice系数为0.43(四分位间距0.20 - 0.64)。DWI病变中的平均ADC值(= -0.68,<0.001)和DWI病变体积(= 0.29,<0.001)可预测性能。最佳个体ADC阈值在受试者之间有所不同,中位数≤691×10⁻⁶mm²/s(四分位间距≤660 - 750×10⁻⁶mm²/s)。DWI病变中的平均ADC值(= -0.96,<0.001)和脑实质中的平均ADC值(= 0.24,<0.001)与个体阈值的性能相关。
描绘急性中风病变的ADC阈值性能在患者之间差异很大。它受病变大小以及病变和实质ADC值等因素影响。考虑到ADC图固有的噪声,基于ADC阈值的非常小病变的自动描绘并不可靠。