Suppr超能文献

评估西门子医疗的StrokeSegApp在缺血性中风患者中进行自动扩散和灌注病变分割的性能。

Evaluation of Siemens Healthineers' StrokeSegApp for automated diffusion and perfusion lesion segmentation in patients with ischemic stroke.

作者信息

Teichmann Lynnet-Samuel J, Khalil Ahmed A, Villringer Kersten, Fiebach Jochen B, Huwer Stefan, Gibson Eli, Galinovic Ivana

机构信息

Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.

Siemens Healthineers AG, Erlangen, Germany.

出版信息

Front Neurol. 2025 Jan 24;16:1518477. doi: 10.3389/fneur.2025.1518477. eCollection 2025.

Abstract

PURPOSE

This study aimed to evaluate the perfomance of Siemens Healthineers' StrokeSegApp performance in automatically segmenting diffusion and perfusion lesions in patients with acute ischemic stroke and to assess its clinical utility in guiding mechanical thrombectomy decisions.

METHODS

This retrospective study used MRI data of acute ischemic stroke patients from the prospective observational single-center 1000Plus study, acquired between September 2008 and June 2013 (clinicaltrials.org; NCT00715533) and manually segmented by radiologists as the ground truth. The performance of the StrokeSegApp was compared against this ground truth using the dice similarity coefficient (DSC) and Bland-Altman plots. The study also evaluated the application's ability to recommend mechanical thrombectomy based on DEFUSE 2 and 3 trial criteria.

RESULTS

The StrokeSegApp demonstrated a mean DSC of 0.60 (95% CI: 0.57-0.63;  = 241) for diffusion deficit segmentation and 0.80 (95% CI: 0.76-0.85;  = 56) for perfusion deficit segmentation. The mean volume deviation was 0.49 mL for diffusion lesions and -7.69 mL for perfusion lesions. Out of 56 subjects meeting DEFUSE 2/3 criteria in the cohort, it correctly identified mechanical thrombectomy candidates with a sensitivity of 82.1% (95% CI: 63.1-93.9%) and a specificity of 96.4% (95% CI: 81.7-99.9%).

CONCLUSION

The Siemens Healthineers' StrokeSegApp provides accurate automated segmentation of ischemic stroke lesions, comparable to human experts as well as similar commercial software, and shows potential as a reliable tool in clinical decision-making for stroke treatment.

摘要

目的

本研究旨在评估西门子医疗公司的StrokeSegApp在自动分割急性缺血性中风患者的扩散和灌注病变方面的性能,并评估其在指导机械取栓决策中的临床效用。

方法

这项回顾性研究使用了来自前瞻性观察性单中心1000Plus研究的急性缺血性中风患者的MRI数据,该研究于2008年9月至2013年6月期间进行(clinicaltrials.org;NCT00715533),并由放射科医生手动分割作为金标准。使用骰子相似系数(DSC)和布兰德-奥特曼图将StrokeSegApp的性能与该金标准进行比较。该研究还评估了该应用程序根据DEFUSE 2和3试验标准推荐机械取栓的能力。

结果

StrokeSegApp在扩散缺陷分割方面的平均DSC为0.60(95%CI:0.57-0.63;n=241),在灌注缺陷分割方面为0.80(95%CI:0.76-0.85;n=56)。扩散病变的平均体积偏差为0.49mL,灌注病变为-7.69mL。在队列中符合DEFUSE 2/3标准的56名受试者中,它正确识别机械取栓候选者的灵敏度为82.1%(95%CI:63.1-93.9%),特异性为96.4%(95%CI:81.7-99.9%)。

结论

西门子医疗公司的StrokeSegApp能够对缺血性中风病变进行准确的自动分割,与人类专家以及类似的商业软件相当,并显示出作为中风治疗临床决策中可靠工具的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7198/11804811/f7c8d724f368/fneur-16-1518477-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验