Suppr超能文献

自动分割肺肿瘤中优化器及其性能的评估

Assessment of Optimizers and their Performance in Autosegmenting Lung Tumors.

作者信息

Ramachandran Prabhakar, Eswarlal Tamma, Lehman Margot, Colbert Zachery

机构信息

Department of Radiation Oncology, Cancer Services, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia.

Department of Engineering Mathematics, College of Engineering, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Andhra Pradesh, India.

出版信息

J Med Phys. 2023 Apr-Jun;48(2):129-135. doi: 10.4103/jmp.jmp_54_23. Epub 2023 Jun 29.

Abstract

PURPOSE

Optimizers are widely utilized across various domains to enhance desired outcomes by either maximizing or minimizing objective functions. In the context of deep learning, they help to minimize the loss function and improve model's performance. This study aims to evaluate the accuracy of different optimizers employed for autosegmentation of non-small cell lung cancer (NSCLC) target volumes on thoracic computed tomography images utilized in oncology.

MATERIALS AND METHODS

The study utilized 112 patients, comprising 92 patients from "The Cancer Imaging Archive" (TCIA) and 20 of our local clinical patients, to evaluate the efficacy of various optimizers. The gross tumor volume was selected as the foreground mask for training and testing the models. Of the 92 TCIA patients, 57 were used for training and validation, and the remaining 35 for testing using nnU-Net. The performance of the final model was further evaluated on the 20 local clinical patient datasets. Six different optimizers, namely AdaDelta, AdaGrad, Adam, NAdam, RMSprop, and stochastic gradient descent (SGD), were investigated. To assess the agreement between the predicted volume and the ground truth, several metrics including Dice similarity coefficient (DSC), Jaccard index, sensitivity, precision, Hausdorff distance (HD), 95 percentile Hausdorff distance (HD95), and average symmetric surface distance (ASSD) were utilized.

RESULTS

The DSC values for AdaDelta, AdaGrad, Adam, NAdam, RMSprop, and SGD were 0.75, 0.84, 0.85, 0.84, 0.83, and 0.81, respectively, for the TCIA test data. However, when the model trained on TCIA datasets was applied to the clinical datasets, the DSC, HD, HD95, and ASSD metrics showed a statistically significant decrease in performance compared to the TCIA test datasets, indicating the presence of image and/or mask heterogeneity between the data sources.

CONCLUSION

The choice of optimizer in deep learning is a critical factor that can significantly impact the performance of autosegmentation models. However, it is worth noting that the behavior of optimizers may vary when applied to new clinical datasets, which can lead to changes in models' performance. Therefore, selecting the appropriate optimizer for a specific task is essential to ensure optimal performance and generalizability of the model to different datasets.

摘要

目的

优化器在各个领域被广泛应用,通过最大化或最小化目标函数来提高预期结果。在深度学习中,它们有助于最小化损失函数并提升模型性能。本研究旨在评估用于肿瘤学中胸部计算机断层扫描图像上非小细胞肺癌(NSCLC)靶区自动分割的不同优化器的准确性。

材料与方法

该研究使用了112名患者,包括来自“癌症影像存档”(TCIA)的92名患者和20名本地临床患者,以评估各种优化器的效果。将大体肿瘤体积选作训练和测试模型的前景掩码。在92名TCIA患者中,57名用于训练和验证,其余35名使用nnU-Net进行测试。最终模型的性能在20个本地临床患者数据集上进一步评估。研究了六种不同的优化器,即AdaDelta、AdaGrad、Adam、NAdam、RMSprop和随机梯度下降(SGD)。为评估预测体积与真实情况之间的一致性,使用了多个指标,包括骰子相似系数(DSC)、杰卡德指数、灵敏度、精度、豪斯多夫距离(HD)、95百分位数豪斯多夫距离(HD95)和平均对称表面距离(ASSD)。

结果

对于TCIA测试数据,AdaDelta、AdaGrad、Adam、NAdam、RMSprop和SGD的DSC值分别为0.75、0.84、0.85,、0.84、0.83和0.81。然而,当将在TCIA数据集上训练的模型应用于临床数据集时,与TCIA测试数据集相比,DSC、HD、HD95和ASSD指标在性能上显示出统计学上的显著下降,表明数据源之间存在图像和/或掩码异质性。

结论

深度学习中优化器的选择是一个关键因素,会显著影响自动分割模型的性能。然而,值得注意的是,优化器应用于新的临床数据集时其行为可能会有所不同,这可能导致模型性能发生变化。因此,为特定任务选择合适的优化器对于确保模型在不同数据集上的最佳性能和通用性至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d36f/10419743/931e4d84a88b/JMP-48-129-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验