Suppr超能文献

概念验证:使用反向传播神经网络(BPNN)预测癌症患者的痛苦。

Proof of concept: Predicting distress in cancer patients using back propagation neural network (BPNN).

作者信息

Jan Ben Schulze, Dörner Marc, Günther Moritz Philipp, von Känel Roland, Euler Sebastian

机构信息

Department of Consultation-Liaison-Psychiatry and Psychosomatic Medicine, University Hospital Zurich, University of Zurich, Zurich, Switzerland.

出版信息

Heliyon. 2023 Jul 15;9(8):e18328. doi: 10.1016/j.heliyon.2023.e18328. eCollection 2023 Aug.

Abstract

BACKGROUND

Research findings suggest that a significant proportion of individuals diagnosed with cancer, ranging from 25% to 60%, experience distress and require access to psycho-oncological services. Until now, only contemporary approaches, such as logistic regression, have been used to determine predictors of distress in oncological patients. To improve individual prediction accuracy, novel approaches are required. We aimed to establish a prediction model for distress in cancer patients based on a back propagation neural network (BPNN).

METHODS

Retrospective data was gathered from a cohort of 3063 oncological patients who received diagnoses and treatment spanning the years 2011-2019. The distress thermometer (DT) has been used as screening instrument. Potential predictors of distress were identified using logistic regression. Subsequently, a prediction model for distress was developed using BPNN.

RESULTS

Logistic regression identified 13 significant independent variables as predictors of distress, including emotional, physical and practical problems. Through repetitive data simulation processes, it was determined that a 3-layer BPNN with 8 neurons in the hidden layer demonstrates the highest level of accuracy as a prediction model. This model exhibits a sensitivity of 79.0%, specificity of 71.8%, positive predictive value of 78.9%, negative predictive value of 71.9%, and an overall coincidence rate of 75.9%.

CONCLUSION

The final BPNN model serves as a compelling proof of concept for leveraging artificial intelligence in predicting distress and its associated risk factors in cancer patients. The final model exhibits a remarkable level of discrimination and feasibility, underscoring its potential for identifying patients vulnerable to distress.

摘要

背景

研究结果表明,在被诊断患有癌症的个体中,有相当一部分人(比例在25%至60%之间)会经历痛苦,需要获得心理肿瘤学服务。到目前为止,只有当代方法,如逻辑回归,被用于确定肿瘤患者痛苦的预测因素。为了提高个体预测准确性,需要新的方法。我们旨在基于反向传播神经网络(BPNN)建立一个癌症患者痛苦预测模型。

方法

从2011年至2019年期间接受诊断和治疗的3063名肿瘤患者队列中收集回顾性数据。痛苦温度计(DT)已被用作筛查工具。使用逻辑回归确定痛苦的潜在预测因素。随后,使用BPNN开发了一个痛苦预测模型。

结果

逻辑回归确定了13个显著的独立变量作为痛苦的预测因素,包括情绪、身体和实际问题。通过重复的数据模拟过程,确定隐藏层有8个神经元的三层BPNN作为预测模型具有最高的准确率。该模型的灵敏度为79.0%,特异度为71.8%,阳性预测值为78.9%,阴性预测值为71.9%,总体符合率为75.9%。

结论

最终的BPNN模型有力地证明了利用人工智能预测癌症患者痛苦及其相关风险因素的概念。最终模型表现出显著的区分度和可行性,突出了其识别易受痛苦影响患者的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf56/10412887/b6b7f755dad1/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验