Suppr超能文献

冠状动脉搭桥术后胸腔积液的危险因素识别与预测

Risk factor identification and prediction of pleural effusion following coronary artery bypass grafting.

作者信息

Lu Caiyun, Jiang Fan, Pan Ling, Lin Jingjing, Peng Yuanshu, Shi Huanzhong

机构信息

Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University Chaoyang, Beijing 100020, China.

Department of Respiratory and Critical Care Medicine, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine Nanning 530011, Guangxi, China.

出版信息

Am J Transl Res. 2025 Apr 15;17(4):2850-2871. doi: 10.62347/KGKL5899. eCollection 2025.

Abstract

OBJECTIVE

To evaluate the incidence of pleural effusion (PE) following coronary artery bypass grafting (CABG), identify associated risk factors, and develop a validated predictive model for early detection.

METHODS

A retrospective cohort of 1,979 patients who underwent CABG at Beijing Chaoyang Hospital (Capital Medical University) was randomly divided into training (70%) and validation (30%) sets. Risk factors for PE were identified through univariate analysis, LASSO regression, and multivariate logistic regression. Five machine learning models-nomogram, back-propagation neural network (BPNN), random forest, gradient boosting, and support vector machine-were developed. External validation was performed using data from 289 patients at the First Affiliated Hospital of Guangxi Medical University.

RESULTS

PE occurred in 71.0% of patients (1,405/1,979) within 3 days postoperatively. Independent risk factors included body mass index (BMI), carotid artery stenosis, postoperative pneumonia, duration of mechanical ventilation, intraoperative blood loss, operative time, and ejection fraction. Among the models, the BPNN demonstrated the best performance, with area under the curve (AUC) values of 0.828 in the training set and 0.751 in the internal validation set. The AUC for external validation was 0.737, outperforming the other models across all evaluation metrics.

CONCLUSIONS

This study developed a predictive model for post-CABG pleural effusion with high discriminatory power, providing a useful tool for early risk stratification in clinical settings.

摘要

目的

评估冠状动脉旁路移植术(CABG)后胸腔积液(PE)的发生率,识别相关危险因素,并建立一个经过验证的早期检测预测模型。

方法

对在北京朝阳医院(首都医科大学)接受CABG的1979例患者进行回顾性队列研究,随机分为训练集(70%)和验证集(30%)。通过单因素分析、LASSO回归和多因素逻辑回归确定PE的危险因素。开发了五个机器学习模型——列线图、反向传播神经网络(BPNN)、随机森林、梯度提升和支持向量机。使用广西医科大学第一附属医院289例患者的数据进行外部验证。

结果

71.0%的患者(1405/1979)在术后3天内发生PE。独立危险因素包括体重指数(BMI)、颈动脉狭窄、术后肺炎、机械通气时间、术中失血、手术时间和射血分数。在这些模型中,BPNN表现最佳,训练集的曲线下面积(AUC)值为0.828,内部验证集为0.751。外部验证的AUC为0.737,在所有评估指标上均优于其他模型。

结论

本研究建立了一个具有高辨别力的CABG后胸腔积液预测模型,为临床早期风险分层提供了一个有用的工具。

相似文献

1
Risk factor identification and prediction of pleural effusion following coronary artery bypass grafting.
Am J Transl Res. 2025 Apr 15;17(4):2850-2871. doi: 10.62347/KGKL5899. eCollection 2025.
2
Prediction of postoperative stroke in patients experienced coronary artery bypass grafting surgery: a machine learning approach.
Front Cardiovasc Med. 2024 Dec 13;11:1448740. doi: 10.3389/fcvm.2024.1448740. eCollection 2024.
7
Can Predictive Modeling Tools Identify Patients at High Risk of Prolonged Opioid Use After ACL Reconstruction?
Clin Orthop Relat Res. 2020 Jul;478(7):0-1618. doi: 10.1097/CORR.0000000000001251.
8
Development and Validation of a Scoring System for Early Diagnosis of Malignant Pleural Effusion Based on a Nomogram.
Front Oncol. 2021 Dec 7;11:775079. doi: 10.3389/fonc.2021.775079. eCollection 2021.

本文引用的文献

1
Performance of an AI prediction tool for new-onset atrial fibrillation after coronary artery bypass grafting.
EClinicalMedicine. 2025 Feb 24;81:103131. doi: 10.1016/j.eclinm.2025.103131. eCollection 2025 Mar.
2
The Risk of Adverse Cardiac Events after Pneumonia in Patients with Coronary Artery Disease.
Ann Am Thorac Soc. 2025 Jun;22(6):855-862. doi: 10.1513/AnnalsATS.202407-714OC.
4
The Current State of Coronary Revascularization: Coronary Artery Bypass Graft Surgery Versus Percutaneous Coronary Interventions.
Curr Cardiol Rep. 2024 Sep;26(9):919-933. doi: 10.1007/s11886-024-02090-x. Epub 2024 Jul 10.
5
LightGBM is an Effective Predictive Model for Postoperative Complications in Gastric Cancer: A Study Integrating Radiomics with Ensemble Learning.
J Imaging Inform Med. 2024 Dec;37(6):3034-3048. doi: 10.1007/s10278-024-01172-0. Epub 2024 Jun 28.
7
Proof of concept: Predicting distress in cancer patients using back propagation neural network (BPNN).
Heliyon. 2023 Jul 15;9(8):e18328. doi: 10.1016/j.heliyon.2023.e18328. eCollection 2023 Aug.
9
Long-term survival, cardiovascular, and functional outcomes after minimally invasive coronary artery bypass grafting in 566 patients.
J Thorac Cardiovasc Surg. 2024 Oct;168(4):1080-1088.e2. doi: 10.1016/j.jtcvs.2023.07.047. Epub 2023 Aug 6.
10
British Thoracic Society Guideline for pleural disease.
Thorax. 2023 Jul;78(Suppl 3):s1-s42. doi: 10.1136/thorax-2022-219784.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验