Wang Dianzhuo, Huot Marian, Mohanty Vaibhav, Shakhnovich Eugene I
Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA.
John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA.
bioRxiv. 2024 Jan 22:2023.07.23.549087. doi: 10.1101/2023.07.23.549087.
SARS-CoV-2 employs its spike protein's receptor binding domain (RBD) to enter host cells. The RBD is constantly subjected to immune responses, while requiring efficient binding to host cell receptors for successful infection. However, our understanding of how RBD's biophysical properties contribute to SARS-CoV-2's epidemiological fitness remains largely incomplete. Through a comprehensive approach, comprising large-scale sequence analysis of SARS-CoV-2 variants and the discovery of a fitness function based on binding thermodynamics, we unravel the relationship between the biophysical properties of RBD variants and their contribution to viral fitness. We developed a biophysical model that uses statistical mechanics to map the molecular phenotype space, characterized by binding constants of RBD to ACE2, LY-CoV016, LY-CoV555, REGN10987, and S309, onto a epistatic fitness landscape. We validate our findings through experimentally measured and machine learning (ML) estimated binding affinities, coupled with infectivity data derived from population-level sequencing. Our analysis reveals that this model effectively predicts the fitness of novel RBD variants and can account for the epistatic interactions among mutations, including explaining the later reversal of Q493R. Our study sheds light on the impact of specific mutations on viral fitness and delivers a tool for predicting the future epidemiological trajectory of previously unseen or emerging low frequency variants. These insights offer not only greater understanding of viral evolution but also potentially aid in guiding public health decisions in the battle against COVID-19 and future pandemics.
严重急性呼吸综合征冠状病毒2(SARS-CoV-2)利用其刺突蛋白的受体结合域(RBD)进入宿主细胞。RBD不断受到免疫反应的影响,同时需要与宿主细胞受体有效结合才能成功感染。然而,我们对RBD的生物物理特性如何影响SARS-CoV-2的流行病学适应性的理解仍有很大不足。通过一种综合方法,包括对SARS-CoV-2变体进行大规模序列分析以及基于结合热力学发现适应性函数,我们揭示了RBD变体的生物物理特性与其对病毒适应性的贡献之间的关系。我们开发了一个生物物理模型,该模型使用统计力学将以RBD与ACE2、LY-CoV016、LY-CoV555、REGN10987和S309的结合常数为特征的分子表型空间映射到上位适应性景观上。我们通过实验测量和机器学习(ML)估计的结合亲和力以及从群体水平测序获得的感染性数据来验证我们的发现。我们的分析表明,该模型能够有效地预测新型RBD变体的适应性,并能够解释突变之间的上位相互作用,包括解释Q493R突变后来的逆转情况。我们的研究揭示了特定突变对病毒适应性的影响,并提供了一种工具来预测以前未见过或新出现的低频变体的未来流行病学轨迹。这些见解不仅有助于更深入地理解病毒进化,还可能有助于指导抗击COVID-19及未来大流行的公共卫生决策。