Suppr超能文献

利用电子健康记录中的机器学习算法预测多囊卵巢综合征(PCOS)。

Predicting polycystic ovary syndrome (PCOS) with machine learning algorithms from electronic health records.

作者信息

Zad Zahra, Jiang Victoria S, Wolf Amber T, Wang Taiyao, Cheng J Jojo, Paschalidis Ioannis Ch, Mahalingaiah Shruthi

出版信息

medRxiv. 2023 Oct 1:2023.07.27.23293255. doi: 10.1101/2023.07.27.23293255.

Abstract

INTRODUCTION

Predictive models have been used to aid early diagnosis of PCOS, though existing models are based on small sample sizes and limited to fertility clinic populations. We built a predictive model using machine learning algorithms based on an outpatient population at risk for PCOS to predict risk and facilitate earlier diagnosis, particularly among those who meet diagnostic criteria but have not received a diagnosis.

METHODS

This is a retrospective cohort study from a SafetyNet hospital's electronic health records (EHR) from 2003-2016. The study population included 30,601 women aged 18-45 years without concurrent endocrinopathy who had any visit to Boston Medical Center for primary care, obstetrics and gynecology, endocrinology, family medicine, or general internal medicine. Four prediction outcomes were assessed for PCOS. The first outcome was PCOS ICD-9 diagnosis with additional model outcomes of algorithm-defined PCOS. The latter was based on Rotterdam criteria and merging laboratory values, radiographic imaging, and ICD data from the EHR to define irregular menstruation, hyperandrogenism, and polycystic ovarian morphology on ultrasound.

RESULTS

We developed predictive models using four machine learning methods: logistic regression, supported vector machine, gradient boosted trees, and random forests. Hormone values (follicle-stimulating hormone, luteinizing hormone, estradiol, and sex hormone binding globulin) were combined to create a multilayer perceptron score using a neural network classifier. Prediction of PCOS prior to clinical diagnosis in an out-of-sample test set of patients achieved AUC of 85%, 81%, 80%, and 82%, respectively in Models I, II, III and IV. Significant positive predictors of PCOS diagnosis across models included hormone levels and obesity; negative predictors included gravidity and positive bHCG.

CONCLUSIONS

Machine learning algorithms were used to predict PCOS based on a large at-risk population. This approach may guide early detection of PCOS within EHR-interfaced populations to facilitate counseling and interventions that may reduce long-term health consequences. Our model illustrates the potential benefits of an artificial intelligence-enabled provider assistance tool that can be integrated into the EHR to reduce delays in diagnosis. However, model validation in other hospital-based populations is necessary.

摘要

引言

预测模型已被用于辅助多囊卵巢综合征(PCOS)的早期诊断,不过现有模型基于小样本量且局限于生育门诊人群。我们基于有PCOS风险的门诊人群,使用机器学习算法构建了一个预测模型,以预测风险并促进更早诊断,特别是在那些符合诊断标准但尚未确诊的人群中。

方法

这是一项回顾性队列研究,数据来自一家安全网医院2003年至2016年的电子健康记录(EHR)。研究人群包括30601名年龄在18至45岁之间、无并发内分泌病且曾因初级保健、妇产科、内分泌科、家庭医学或普通内科到波士顿医疗中心就诊的女性。评估了PCOS的四种预测结果。第一个结果是PCOS的ICD - 9诊断,另外的模型结果是算法定义的PCOS。后者基于鹿特丹标准,并合并了实验室值、影像学检查以及EHR中的ICD数据,以在超声上定义月经不规律、高雄激素血症和多囊卵巢形态。

结果

我们使用四种机器学习方法开发了预测模型:逻辑回归、支持向量机、梯度提升树和随机森林。将激素值(促卵泡激素、促黄体生成素、雌二醇和性激素结合球蛋白)结合起来,使用神经网络分类器创建了一个多层感知器评分。在患者的样本外测试集中,临床诊断前对PCOS进行预测时,模型I、II、III和IV的曲线下面积(AUC)分别达到85%、81%、80%和82%。各模型中PCOS诊断的显著正预测因素包括激素水平和肥胖;负预测因素包括妊娠次数和β - 人绒毛膜促性腺激素阳性。

结论

基于大量有风险人群,使用机器学习算法预测PCOS。这种方法可能指导在与EHR连接的人群中早期发现PCOS,以促进咨询和干预,这可能减少长期健康后果。我们的模型说明了一种可集成到EHR中的人工智能辅助医疗工具的潜在益处,该工具可减少诊断延迟。然而,有必要在其他基于医院的人群中对模型进行验证。

相似文献

1
Predicting polycystic ovary syndrome (PCOS) with machine learning algorithms from electronic health records.
medRxiv. 2023 Oct 1:2023.07.27.23293255. doi: 10.1101/2023.07.27.23293255.
2
Predicting polycystic ovary syndrome with machine learning algorithms from electronic health records.
Front Endocrinol (Lausanne). 2024 Jan 30;15:1298628. doi: 10.3389/fendo.2024.1298628. eCollection 2024.
3
Identification of subjects with polycystic ovary syndrome using electronic health records.
Reprod Biol Endocrinol. 2015 Oct 29;13:116. doi: 10.1186/s12958-015-0115-z.
6
Polycystic ovary syndrome: clinical and laboratory variables related to new phenotypes using machine-learning models.
J Endocrinol Invest. 2022 Mar;45(3):497-505. doi: 10.1007/s40618-021-01672-8. Epub 2021 Sep 15.
8
Application of machine learning and artificial intelligence in the diagnosis and classification of polycystic ovarian syndrome: a systematic review.
Front Endocrinol (Lausanne). 2023 Sep 18;14:1106625. doi: 10.3389/fendo.2023.1106625. eCollection 2023.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验