Haddox Hugh K, Galloway Jared G, Dadonaite Bernadeta, Bloom Jesse D, Matsen Iv Frederick A, DeWitt William S
Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98102, USA.
Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
bioRxiv. 2023 Aug 2:2023.07.31.551037. doi: 10.1101/2023.07.31.551037.
Deep mutational scanning (DMS) is a high-throughput experimental technique that measures the effects of thousands of mutations to a protein. These experiments can be performed on multiple homologs of a protein or on the same protein selected under multiple conditions. It is often of biological interest to identify mutations with shifted effects across homologs or conditions. However, it is challenging to determine if observed shifts arise from biological signal or experimental noise. Here, we describe a method for jointly inferring mutational effects across multiple DMS experiments while also identifying mutations that have shifted in their effects among experiments. A key aspect of our method is to regularize the inferred shifts, so that they are nonzero only when strongly supported by the data. We apply this method to DMS experiments that measure how mutations to spike proteins from SARS-CoV-2 variants (Delta, Omicron BA.1, and Omicron BA.2) affect cell entry. Most mutational effects are conserved between these spike homologs, but a fraction have markedly shifted. We experimentally validate a subset of the mutations inferred to have shifted effects, and confirm differences of > 1,000-fold in the impact of the same mutation on spike-mediated viral infection across spikes from different SARS-CoV-2 variants. Overall, our work establishes a general approach for comparing sets of DMS experiments to identify biologically important shifts in mutational effects.
深度突变扫描(DMS)是一种高通量实验技术,可测量数千种蛋白质突变的影响。这些实验可以在一种蛋白质的多个同源物上进行,也可以在多种条件下选择的同一种蛋白质上进行。识别在同源物或条件之间具有效应变化的突变通常具有生物学意义。然而,确定观察到的变化是由生物信号还是实验噪声引起具有挑战性。在这里,我们描述了一种方法,用于联合推断多个DMS实验中的突变效应,同时识别在实验之间效应发生变化的突变。我们方法的一个关键方面是对推断的变化进行正则化,以便只有在数据有力支持时它们才不为零。我们将此方法应用于DMS实验,这些实验测量了严重急性呼吸综合征冠状病毒2(SARS-CoV-2)变体(德尔塔、奥密克戎BA.1和奥密克戎BA.2)刺突蛋白的突变如何影响细胞进入。这些刺突同源物之间的大多数突变效应是保守的,但有一部分发生了明显变化。我们通过实验验证了推断具有效应变化的一部分突变,并证实了同一突变对来自不同SARS-CoV-2变体的刺突介导的病毒感染的影响存在超过1000倍的差异。总体而言,我们的工作建立了一种比较DMS实验集以识别突变效应中生物学上重要变化的通用方法。