Suppr超能文献

用于 Southampton 诺如病毒 SV3CP 蛋白酶比色检测的两性离子肽设计方法。

An approach to zwitterionic peptide design for colorimetric detection of the Southampton norovirus SV3CP protease.

机构信息

Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA.

Department of NanoEngineering, University of California, San Diego, La Jolla, CA 92093, United States.

出版信息

Analyst. 2023 Sep 11;148(18):4504-4512. doi: 10.1039/d3an00873h.

Abstract

Noroviruses are highly contagious and are one of the leading causes of acute gastroenteritis worldwide. Due to a lack of effective antiviral therapies, there is a need to diagnose and surveil norovirus infections to implement quarantine protocols and prevent large outbreaks. Currently, the gold standard of diagnosis uses reverse transcription polymerase chain reaction (RT-PCR), but PCR can have limited availability. Here, we propose a combination of a tunable peptide substrate and gold nanoparticles (AuNPs) to colorimetrically detect the Southampton norovirus 3C-like protease (SV3CP), a key protease in viral replication. Careful design of the substrate employs a zwitterionic peptide with opposite charged moieties on the C- and N- termini to induce a rapid color change visible to the naked eye; thus, this color change is indicative of SV3CP activity. This work expands on existing zwitterionic peptide strategies for protease detection by systematically evaluating the effects of lysine and arginine on nanoparticle charge screening. We also determine a limit of detection for SV3CP of 28.0 nM with comparable results in external breath condensate, urine, and fecal matter for 100 nM of SV3CP. The key advantage of this system is its simplicity and accessibility, thus making it an attractive tool for qualitative point-of-care diagnostics.

摘要

诺如病毒具有高度传染性,是全球急性肠胃炎的主要病因之一。由于缺乏有效的抗病毒疗法,因此需要对诺如病毒感染进行诊断和监测,以实施检疫协议并预防大规模爆发。目前,诊断的金标准是使用逆转录聚合酶链反应(RT-PCR),但 PCR 可能可用性有限。在这里,我们提出了一种可调肽底物和金纳米粒子(AuNPs)的组合,以比色法检测南安普敦诺如病毒 3C 样蛋白酶(SV3CP),这是病毒复制中的关键蛋白酶。底物的精心设计采用带有相反带电部分的两性离子肽在 C 端和 N 端,以诱导肉眼可见的快速颜色变化;因此,这种颜色变化表明 SV3CP 的活性。这项工作通过系统评估赖氨酸和精氨酸对纳米粒子电荷屏蔽的影响,扩展了现有的用于蛋白酶检测的两性离子肽策略。我们还确定了 SV3CP 的检测限为 28.0 nM,在外部呼吸冷凝物、尿液和粪便中,100 nM 的 SV3CP 也得到了类似的结果。该系统的主要优势在于其简单性和可及性,因此使其成为一种有吸引力的即时护理诊断工具。

相似文献

2
Valence-driven colorimetric detection of norovirus protease peptide-AuNP interactions.
Chem Commun (Camb). 2023 Oct 17;59(83):12459-12462. doi: 10.1039/d3cc04142e.
3
Detection of noroviruses in fecal specimens by direct RT-PCR without RNA purification.
J Virol Methods. 2010 Feb;163(2):282-6. doi: 10.1016/j.jviromet.2009.10.011. Epub 2009 Oct 28.
4
Evaluation of Various Real-Time Reverse Transcription Quantitative PCR Assays for Norovirus Detection.
J Microbiol Biotechnol. 2017 Apr 28;27(4):816-824. doi: 10.4014/jmb.1612.12026.
5
A structural study of norovirus 3C protease specificity: binding of a designed active site-directed peptide inhibitor.
Biochemistry. 2011 Jan 18;50(2):240-9. doi: 10.1021/bi1008497. Epub 2010 Dec 15.
6
Analytical performance of norovirus real-time RT-PCR detection protocols in Canadian laboratories.
J Clin Virol. 2011 Feb;50(2):109-13. doi: 10.1016/j.jcv.2010.10.008. Epub 2010 Nov 10.
7
Ultrasensitive Colorimetric Detection of Murine Norovirus Using NanoZyme Aptasensor.
Anal Chem. 2019 Mar 5;91(5):3270-3276. doi: 10.1021/acs.analchem.8b03300. Epub 2019 Feb 20.
9
Fast detection of Noroviruses using a real-time PCR assay and automated sample preparation.
BMC Infect Dis. 2004 Jun 9;4:15. doi: 10.1186/1471-2334-4-15.
10
Evaluation of a new immunochromatographic assay kit for the rapid detection of norovirus in fecal specimens.
Ann Lab Med. 2012 Jan;32(1):79-81. doi: 10.3343/alm.2012.32.1.79. Epub 2011 Dec 20.

引用本文的文献

1
Colorimetric sensing for translational applications: from colorants to mechanisms.
Chem Soc Rev. 2024 Jul 29;53(15):7681-7741. doi: 10.1039/d4cs00328d.

本文引用的文献

1
Peptidic Sulfhydryl for Interfacing Nanocrystals and Subsequent Sensing of SARS-CoV-2 Protease.
Chem Mater. 2022 Feb 8;34(3):1259-1268. doi: 10.1021/acs.chemmater.1c03871. Epub 2022 Jan 18.
2
Empirical Optimization of Peptide Sequence and Nanoparticle Colloidal Stability: The Impact of Surface Ligands and Implications for Colorimetric Sensing.
ACS Appl Mater Interfaces. 2023 Apr 26;15(16):20483-20494. doi: 10.1021/acsami.3c00862. Epub 2023 Apr 14.
3
Viral Gastroenteritis: Sickness Symptoms and Behavioral Responses.
mBio. 2023 Apr 25;14(2):e0356722. doi: 10.1128/mbio.03567-22. Epub 2023 Mar 28.
4
Peptide valence-induced breaks in plasmonic coupling.
Chem Sci. 2023 Feb 7;14(10):2659-2668. doi: 10.1039/d2sc05837e. eCollection 2023 Mar 8.
5
Peptide Amphiphile Mediated Co-assembly for Nanoplasmonic Sensing.
Angew Chem Int Ed Engl. 2023 Jan 23;62(4):e202214394. doi: 10.1002/anie.202214394. Epub 2022 Dec 15.
6
Spacer Matters: All-Peptide-Based Ligand for Promoting Interfacial Proteolysis and Plasmonic Coupling.
Nano Lett. 2022 Nov 23;22(22):8932-8940. doi: 10.1021/acs.nanolett.2c03052. Epub 2022 Nov 8.
7
Di-Arginine Additives for Dissociation of Gold Nanoparticle Aggregates: A Matrix-Insensitive Approach with Applications in Protease Detection.
ACS Appl Mater Interfaces. 2022 Nov 23;14(46):52553-52565. doi: 10.1021/acsami.2c17531. Epub 2022 Nov 8.
8
Easy colorimetric detection of gadolinium ions based on gold nanoparticles: key role of phosphine-sulfonate ligands.
Nanoscale Adv. 2020 Sep 7;2(10):4671-4681. doi: 10.1039/d0na00374c. eCollection 2020 Oct 13.
9
A Charge-Switchable Zwitterionic Peptide for Rapid Detection of SARS-CoV-2 Main Protease.
Angew Chem Int Ed Engl. 2022 Feb 21;61(9):e202112995. doi: 10.1002/anie.202112995. Epub 2022 Jan 14.
10
Electrostatic co-assembly of nanoparticles with oppositely charged small molecules into static and dynamic superstructures.
Nat Chem. 2021 Oct;13(10):940-949. doi: 10.1038/s41557-021-00752-9. Epub 2021 Sep 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验