Department of Chemistry, City University of Hong Kong, Hong Kong 999077, Hong Kong SAR.
Department of Applied Science, School of Science and Technology, Hong Kong Metropolitan University, Hong Kong, Hong Kong SAR.
ACS Nano. 2023 Sep 12;17(17):17383-17393. doi: 10.1021/acsnano.3c05409. Epub 2023 Aug 14.
Nanozymes are promising alternatives to natural enzymes, but their use remains limited owing to poor specificity. For example, CeO activates HO and displays peroxidase (POD)-like, catalase (CAT)-like, and haloperoxidase (HPO)-like activities. Since they unavoidably compete for HO, affecting its utilization in the target application, the precise manipulation of reaction specificity is thus imperative. Herein, we showed that one can simply achieve this by manipulating the HO activation pathway on pristine CeO in well-defined shapes. This is because the coordination and electronic structures of Ce sites vary with CeO surfaces, wherein the (100) and (111) surfaces display nearly 100% specificity toward POD-/CAT-like and HPO-like activities, respectively. The antibacterial results suggest that the latter surface can well-utilize HO to kill bacteria (cf., the former), which is promising for anti-biofouling applications. This work provides atomic insights into the synthesis of nanozymes with improved activity, reaction specificity, and HO utilization.
纳米酶是天然酶的有前途的替代品,但由于特异性差,其应用仍然受到限制。例如,CeO 激活 HO 并显示过氧化物酶 (POD)-样、过氧化氢酶 (CAT)-样和卤过氧化物酶 (HPO)-样活性。由于它们不可避免地竞争 HO,影响其在目标应用中的利用,因此精确控制反应特异性是至关重要的。在此,我们表明,通过在原始 CeO 的明确定义形状中操纵 HO 激活途径,就可以简单地实现这一点。这是因为 Ce 位点的配位和电子结构随 CeO 表面而变化,其中 (100) 和 (111) 表面对 POD-/CAT-样和 HPO-样活性分别表现出近 100%的特异性。抗菌结果表明,后一种表面可以很好地利用 HO 来杀死细菌(相比之下,前一种表面),这对于抗生物污损应用很有前景。这项工作为提高活性、反应特异性和 HO 利用的纳米酶合成提供了原子见解。
Molecules. 2021-6-19
ACS Appl Mater Interfaces. 2024-6-12
Nanoscale. 2024-2-29
ACS Appl Mater Interfaces. 2018-12-12
ACS Appl Bio Mater. 2023-3-20
Mater Today Bio. 2025-7-18
Nat Commun. 2025-7-24
Adv Sci (Weinh). 2024-12