Suppr超能文献

用于高性能循环肿瘤细胞隔离的防污修饰。

Antifouling modification for high-performance isolation of circulating tumor cells.

机构信息

Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, 300071, China.

Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, 300071, China.

出版信息

Talanta. 2024 Jan 1;266(Pt 2):125048. doi: 10.1016/j.talanta.2023.125048. Epub 2023 Aug 8.

Abstract

Circulating tumor cells (CTCs), which shed from solid tumor tissue into blood circulatory system, have attracted wide attention as a biomarker in the early diagnosis and prognosis of cancer. Given their potential significance in clinics, many platforms have been developed to separate CTCs. However, the high-performance isolation of CTCs remains significant challenges including achieving the sensitivity and specificity necessary due to their extreme rarity and severe biofouling in blood, such as billions of background cells and various proteins. With the advancement of CTCs detection technologies in recent years, the highly efficient and highly specific detection platforms for CTCs have gradually been developed, resulting in improving CTC capture efficiency, purity and sensitivity. In this review, we systematically describe the current strategies with surface modifications by utilizing the antifouling property of polymer, peptide, protein and cell membrane for high-performance enrichment of CTCs. To wrap up, we discuss the substantial challenges facing by current technologies and the potential directions for future research and development.

摘要

循环肿瘤细胞(CTCs)从实体瘤组织脱落进入血液循环系统,作为癌症早期诊断和预后的生物标志物引起了广泛关注。鉴于其在临床中的潜在意义,已经开发出许多平台来分离 CTCs。然而,由于其极其罕见和严重的血液生物污染,如数十亿个背景细胞和各种蛋白质,高灵敏度和特异性的 CTCs 分离仍然是一个重大挑战。近年来,随着 CTCs 检测技术的进步,已经逐渐开发出高效和高特异性的 CTCs 检测平台,从而提高了 CTC 捕获效率、纯度和灵敏度。在这篇综述中,我们系统地描述了利用聚合物、肽、蛋白质和细胞膜的抗污特性进行表面修饰的当前策略,用于高性能富集 CTCs。最后,我们讨论了当前技术面临的重大挑战和未来研究和发展的潜在方向。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验