Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, California, USA.
Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, California, USA; Department of Nephrology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
J Biol Chem. 2023 Sep;299(9):105158. doi: 10.1016/j.jbc.2023.105158. Epub 2023 Aug 12.
Mutations in the gene encoding polycystin-1 (PC1) are the most common cause of autosomal dominant polycystic kidney disease (ADPKD). Cysts in ADPKD exhibit a Warburg-like metabolism characterized by dysfunctional mitochondria and aerobic glycolysis. PC1 is an integral membrane protein with a large extracellular domain, a short C-terminal cytoplasmic tail and shares structural and functional similarities with G protein-coupled receptors. Its exact function remains unclear. The C-terminal cytoplasmic tail of PC1 undergoes proteolytic cleavage, generating soluble fragments that are overexpressed in ADPKD kidneys. The regulation, localization, and function of these fragments is poorly understood. Here, we show that a ∼30 kDa cleavage fragment (PC1-p30), comprising the entire C-terminal tail, undergoes rapid proteasomal degradation by a mechanism involving the von Hippel-Lindau tumor suppressor protein. PC1-p30 is stabilized by reactive oxygen species, and the subcellular localization is regulated by reactive oxygen species in a dose-dependent manner. We found that a second, ∼15 kDa fragment (PC1-p15), is generated by caspase cleavage at a conserved site (Asp-4195) on the PC1 C-terminal tail. PC1-p15 is not subject to degradation and constitutively localizes to the mitochondrial matrix. Both cleavage fragments induce mitochondrial fragmentation, and PC1-p15 expression causes impaired fatty acid oxidation and increased lactate production, indicative of a Warburg-like phenotype. Endogenous PC1 tail fragments accumulate in renal cyst-lining cells in a mouse model of PKD. Collectively, these results identify novel mechanisms regarding the regulation and function of PC1 and suggest that C-terminal PC1 fragments may be involved in the mitochondrial and metabolic abnormalities observed in ADPKD.
多囊蛋白 1(PC1)基因的突变是常染色体显性多囊肾病(ADPKD)的最常见原因。ADPKD 中的囊肿表现出类似于沃伯格的代谢特征,其特征为功能失调的线粒体和有氧糖酵解。PC1 是一种具有大细胞外结构域、短 C 端细胞质尾巴的完整膜蛋白,与 G 蛋白偶联受体具有结构和功能上的相似性。其确切功能仍不清楚。PC1 的 C 端细胞质尾巴经历蛋白水解切割,产生在 ADPKD 肾脏中过度表达的可溶性片段。这些片段的调节、定位和功能知之甚少。在这里,我们表明,包括整个 C 端尾巴在内的约 30 kDa 的切割片段(PC1-p30)通过涉及 von Hippel-Lindau 肿瘤抑制蛋白的机制快速进行蛋白酶体降解。PC1-p30 被活性氧稳定,亚细胞定位通过活性氧以剂量依赖的方式进行调节。我们发现,第二个约 15 kDa 的片段(PC1-p15)通过 PC1 C 端尾巴上保守位点(Asp-4195)的半胱天冬酶切割产生。PC1-p15 不受降解影响,并且组成型定位在线粒体基质中。这两种切割片段均诱导线粒体碎片化,PC1-p15 的表达导致脂肪酸氧化受损和乳酸产量增加,表明存在类似于沃伯格的表型。PKD 小鼠模型中,内源性 PC1 尾巴片段在肾囊肿衬里细胞中积累。总的来说,这些结果确定了 PC1 调节和功能的新机制,并表明 C 端 PC1 片段可能参与 ADPKD 中观察到的线粒体和代谢异常。