CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, 20014, Donostia-San Sebastián, Spain.
Networking Biomedical Research Center, Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Paseo de Miramón 194, 20014, Donostia-San Sebastián, Spain.
Chemistry. 2023 Nov 8;29(62):e202301691. doi: 10.1002/chem.202301691. Epub 2023 Sep 28.
Chiral plasmonic nanoparticles (and their assemblies) interact with biomolecules in a variety of different ways, resulting in distinct optical signatures when probed by circular dichroism spectroscopy. These systems show promise for biosensing applications and offer several advantages over achiral plasmonic systems. Arguably the most notable advantage is that chiral nanoparticles can differentiate between molecular enantiomers and can, therefore, act as sensors for enantiomeric purity. Furthermore, chiral nanoparticles can couple more effectively to chiral biomolecules in biological systems if they have a matching handedness, improving their effectiveness as biomedical agents. In this article, we review the different types of interactions that occur between chiral plasmonic nanoparticle systems and biomolecules, and discuss how circular dichroism spectroscopy can probe these interactions and inform how to optimize systems for biosensing and biomedical applications.
手性等离子体纳米粒子(及其组装体)以多种不同的方式与生物分子相互作用,当用圆二色光谱法探测时,会产生独特的光学特征。这些系统在生物传感应用中具有广阔的应用前景,并相对于非手性等离子体系统具有多个优势。可以说最显著的优势是,手性纳米粒子可以区分分子对映异构体,因此可以作为对映体纯度的传感器。此外,如果手性纳米粒子具有匹配的手性,它们可以更有效地与生物系统中的手性生物分子偶联,从而提高它们作为生物医学试剂的有效性。在本文中,我们综述了手性等离子体纳米粒子系统与生物分子之间发生的不同类型的相互作用,并讨论了圆二色光谱法如何探测这些相互作用,并提供了如何优化用于生物传感和生物医学应用的系统的信息。