Suppr超能文献

利用等离激元学实现生物传感及其他应用

Harnessing the Power of Plasmonics for and Biosensing.

作者信息

Herkert Ediz Kaan, Garcia-Parajo Maria F

机构信息

ICFO - Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels 08860 (Barcelona), Spain.

ICREA-Catalan Institute for Research and Advanced Studies, Pg. Lluis Companys 23, Barcelona 08010, Spain.

出版信息

ACS Photonics. 2025 Feb 17;12(3):1259-1275. doi: 10.1021/acsphotonics.4c01657. eCollection 2025 Mar 19.

Abstract

Plasmonic nanostructures exhibit localized surface plasmon resonances due to collective oscillation of conducting electrons that can be tuned by modulating the nanostructure size, shape, material composition, and local dielectric environment. The strong field confinement and enhancement provided by plasmonic nanostructures have been exploited over the years to enhance the sensitivity for analyte detection down to the single-molecule level, rendering these devices as potentially outstanding biosensors. Here, we summarize methods to detect biological analytes and , with a focus on plasmon-enhanced fluorescence, Raman scattering, infrared absorption, circular dichroism, and refractive index sensing. Given the tremendous advances in the field, we concentrate on a few recent examples toward biosensing under highly challenging detection conditions, including clinically relevant biomarkers in body fluids and nascent applications in living cells and . These emerging platforms serve as inspiration for exploring future directions of nanoplasmonics that can be further harnessed to advance real-world biosensing applications.

摘要

等离子体纳米结构由于传导电子的集体振荡而表现出局域表面等离子体共振,这种共振可以通过调节纳米结构的尺寸、形状、材料成分和局部介电环境来调整。多年来,等离子体纳米结构所提供的强场限制和增强作用已被用于提高分析物检测的灵敏度,直至单分子水平,使这些器件成为潜在的优秀生物传感器。在这里,我们总结了检测生物分析物的方法,重点是等离子体增强荧光、拉曼散射、红外吸收、圆二色性和折射率传感。鉴于该领域的巨大进展,我们专注于一些在极具挑战性的检测条件下进行生物传感的最新实例,包括体液中的临床相关生物标志物以及活细胞中的新兴应用。这些新兴平台为探索纳米等离子体学的未来方向提供了灵感,可进一步利用这些方向推动实际生物传感应用的发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41b4/11926962/c8264c9aaa14/ph4c01657_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验