Suppr超能文献

应用可解释机器学习预测持续性心房颤动消融后形成的有基质标测靶点。

Explainable Machine Learning to Predict Anchored Reentry Substrate Created by Persistent Atrial Fibrillation Ablation in Computational Models.

机构信息

Department of Bioengineering University of Washington Seattle WA USA.

Division of Cardiology University of Washington Seattle WA USA.

出版信息

J Am Heart Assoc. 2023 Aug 15;12(16):e030500. doi: 10.1161/JAHA.123.030500. Epub 2023 Aug 10.

Abstract

Background Postablation arrhythmia recurrence occurs in ~40% of patients with persistent atrial fibrillation. Fibrotic remodeling exacerbates arrhythmic activity in persistent atrial fibrillation and can play a key role in reentrant arrhythmia, but emergent interaction between nonconductive ablation-induced scar and native fibrosis (ie, residual fibrosis) is poorly understood. Methods and Results We conducted computational simulations in pre- and postablation left atrial models reconstructed from late gadolinium enhanced magnetic resonance imaging scans to test the hypothesis that ablation in patients with persistent atrial fibrillation creates new substrate conducive to recurrent arrhythmia mediated by anchored reentry. We trained a random forest machine learning classifier to accurately pinpoint specific nonconductive tissue regions (ie, areas of ablation-delivered scar or vein/valve boundaries) with the capacity to serve as substrate for anchored reentry-driven recurrent arrhythmia (area under the curve: 0.91±0.03). Our analysis suggests there is a distinctive nonconductive tissue pattern prone to serving as arrhythmogenic substrate in postablation models, defined by a specific size and proximity to residual fibrosis. Conclusions Overall, this suggests persistent atrial fibrillation ablation transforms substrate that favors functional reentry (ie, rotors meandering in excitable tissue) into an arrhythmogenic milieu more conducive to anchored reentry. Our work also indicates that explainable machine learning and computational simulations can be combined to effectively probe mechanisms of recurrent arrhythmia.

摘要

背景

消融后,持续性心房颤动患者中约有 40%会出现心律失常复发。纤维性重塑可加重持续性心房颤动中的心律失常活动,并在折返性心律失常中起关键作用,但消融导致的非传导性瘢痕与固有纤维化(即残余纤维化)之间的紧急相互作用仍知之甚少。

方法和结果

我们利用从晚期钆增强磁共振成像扫描重建的术前和术后左心房模型进行了计算模拟,以检验以下假说:持续性心房颤动患者的消融会产生新的基质,有利于由锚定折返介导的复发性心律失常。我们训练了随机森林机器学习分类器,以准确确定特定的非传导组织区域(即消融传递的瘢痕或静脉/瓣膜边界的区域),这些区域具有作为锚定折返驱动的复发性心律失常的基质的能力(曲线下面积:0.91±0.03)。我们的分析表明,在消融后的模型中存在一种独特的非传导性组织模式,易于成为致心律失常的基质,其特征是具有特定的大小和与残余纤维化的接近程度。

结论

总体而言,这表明持续性心房颤动消融将有利于功能性折返(即兴奋组织中的回旋波)的基质转变为更有利于锚定折返的心律失常环境。我们的工作还表明,可解释的机器学习和计算模拟可以结合使用,以有效地探究复发性心律失常的机制。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验