Suppr超能文献

计算医学:电生理学家为保持领先地位应了解的知识。

Computational Medicine: What Electrophysiologists Should Know to Stay Ahead of the Curve.

作者信息

Magoon Matthew J, Nazer Babak, Akoum Nazem, Boyle Patrick M

机构信息

Department of Bioengineering, University of Washington, Seattle, WA, USA.

Division of Cardiology, University of Washington Medicine, Seattle, WA, USA.

出版信息

Curr Cardiol Rep. 2024 Dec;26(12):1393-1403. doi: 10.1007/s11886-024-02136-0. Epub 2024 Sep 20.

Abstract

PURPOSE OF REVIEW

Technology drives the field of cardiac electrophysiology. Recent computational advances will bring exciting changes. To stay ahead of the curve, we recommend electrophysiologists develop a robust appreciation for novel computational techniques, including deterministic, statistical, and hybrid models.

RECENT FINDINGS

In clinical applications, deterministic models use biophysically detailed simulations to offer patient-specific insights. Statistical techniques like machine learning and artificial intelligence recognize patterns in data. Emerging clinical tools are exploring avenues to combine all the above methodologies. We review three ways that computational medicine will aid electrophysiologists by: (1) improving personalized risk assessments, (2) weighing treatment options, and (3) guiding ablation procedures. Leveraging clinical data that are often readily available, computational models will offer valuable insights to improve arrhythmia patient care. As emerging tools promote personalized medicine, physicians must continue to critically evaluate technology-driven tools they consider using to ensure their appropriate implementation.

摘要

综述目的

技术推动心脏电生理学领域发展。近期的计算进展将带来令人兴奋的变革。为了紧跟潮流,我们建议电生理学家对新颖的计算技术,包括确定性模型、统计模型和混合模型,有深入的了解。

最新发现

在临床应用中,确定性模型使用生物物理细节模拟来提供针对个体患者的见解。机器学习和人工智能等统计技术可识别数据中的模式。新兴的临床工具正在探索整合上述所有方法的途径。我们回顾计算医学将通过以下三种方式帮助电生理学家:(1)改进个性化风险评估,(2)权衡治疗方案,以及(3)指导消融手术。利用通常容易获得的临床数据,计算模型将提供有价值的见解,以改善心律失常患者的护理。随着新兴工具推动个性化医疗,医生必须继续审慎评估他们考虑使用的技术驱动工具,以确保其正确实施。

相似文献

2
Machine Learning in Arrhythmia and Electrophysiology.机器学习在心律失常和电生理学中的应用。
Circ Res. 2021 Feb 19;128(4):544-566. doi: 10.1161/CIRCRESAHA.120.317872. Epub 2021 Feb 18.
6
Management of anesthesia for procedures in the cardiac electrophysiology laboratory.心脏电生理实验室手术的麻醉管理
Heart Rhythm. 2025 Jan;22(1):217-230. doi: 10.1016/j.hrthm.2024.06.048. Epub 2024 Jun 26.
8
Digital twins for cardiac electrophysiology: state of the art and future challenges.心脏电生理学的数字孪生:现状与未来挑战。
Herzschrittmacherther Elektrophysiol. 2024 Jun;35(2):118-123. doi: 10.1007/s00399-024-01014-0. Epub 2024 Apr 12.
9
Electrophysiology and ablation of arrhythmias.心律失常的电生理学与消融治疗
Br J Hosp Med (Lond). 2012 Jun;73(6):312-8. doi: 10.12968/hmed.2012.73.6.312.

本文引用的文献

4
Computational Modeling of Cardiac Electrophysiology.计算心脏电生理学模型。
Methods Mol Biol. 2024;2735:63-103. doi: 10.1007/978-1-0716-3527-8_5.
6
Conduction System Pacing for Cardiac Resynchronization Therapy.心脏再同步治疗的传导系统起搏
J Cardiovasc Dev Dis. 2023 Oct 31;10(11):448. doi: 10.3390/jcdd10110448.
7
Personalized biomechanical insights in atrial fibrillation: opportunities & challenges.心房颤动的个性化生物力学见解:机遇与挑战。
Expert Rev Cardiovasc Ther. 2023 Jul-Dec;21(11):817-837. doi: 10.1080/14779072.2023.2273896. Epub 2023 Dec 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验