Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland.
Chromosoma. 2024 Jan;133(1):15-36. doi: 10.1007/s00412-023-00807-5. Epub 2023 Aug 15.
Genome stability is key for healthy cells in healthy organisms, and deregulated maintenance of genome integrity is a hallmark of aging and of age-associated diseases including cancer and neurodegeneration. To maintain a stable genome, genome surveillance and repair pathways are closely intertwined with cell cycle regulation and with DNA transactions that occur during transcription and DNA replication. Coordination of these processes across different time and length scales involves dynamic changes of chromatin topology, clustering of fragile genomic regions and repair factors into nuclear repair centers, mobilization of the nuclear cytoskeleton, and activation of cell cycle checkpoints. Here, we provide a general overview of cell cycle regulation and of the processes involved in genome duplication in human cells, followed by an introduction to replication stress and to the cellular responses elicited by perturbed DNA synthesis. We discuss fragile genomic regions that experience high levels of replication stress, with a particular focus on telomere fragility caused by replication stress at the ends of linear chromosomes. Using alternative lengthening of telomeres (ALT) in cancer cells and ALT-associated PML bodies (APBs) as examples of replication stress-associated clustered DNA damage, we discuss compartmentalization of DNA repair reactions and the role of protein properties implicated in phase separation. Finally, we highlight emerging connections between DNA repair and mechanobiology and discuss how biomolecular condensates, components of the nuclear cytoskeleton, and interfaces between membrane-bound organelles and membraneless macromolecular condensates may cooperate to coordinate genome maintenance in space and time.
基因组稳定性是健康生物体内健康细胞的关键,而基因组完整性的失调维持是衰老和与年龄相关疾病的标志,包括癌症和神经退行性疾病。为了维持稳定的基因组,基因组监测和修复途径与细胞周期调控以及转录和 DNA 复制过程中发生的 DNA 交易密切相关。这些过程在不同的时间和长度尺度上的协调涉及染色质拓扑结构的动态变化、脆性基因组区域和修复因子聚集到核修复中心、核细胞骨架的动员以及细胞周期检查点的激活。在这里,我们提供了人类细胞中细胞周期调控和基因组复制过程的概述,接着介绍了复制应激以及受 DNA 合成干扰引发的细胞反应。我们讨论了经历高水平复制应激的脆性基因组区域,特别关注线性染色体末端因复制应激而导致的端粒脆弱性。我们使用癌细胞中的端粒延长替代(ALT)和与复制应激相关的 PML 体(APB)作为复制应激相关聚集 DNA 损伤的例子,讨论了 DNA 修复反应的分隔和涉及相分离的蛋白质特性的作用。最后,我们强调了 DNA 修复和机械生物学之间的新联系,并讨论了 DNA 修复和机械生物学之间的新联系,以及生物分子凝聚物、核细胞骨架的组成部分以及膜结合细胞器和无膜大分子凝聚物之间的界面如何合作以协调基因组在空间和时间上的维持。
Chromosoma. 2024-1
Methods Mol Biol. 2019
Trends Genet. 2017-9-29
Mol Biol Cell. 2020-8-15
Methods Mol Biol. 2025
Int J Mol Sci. 2025-7-12
Nat Rev Mol Cell Biol. 2025-3-17
Nat Struct Mol Biol. 2024-9
Proc Natl Acad Sci U S A. 2023-8-15
DNA Repair (Amst). 2023-8
Nucleic Acids Res. 2023-7-7