Suppr超能文献

类液体VASP凝聚物驱动肌动蛋白聚合和动态成束。

Liquid-like VASP condensates drive actin polymerization and dynamic bundling.

作者信息

Graham Kristin, Chandrasekaran Aravind, Wang Liping, Ladak Aly, Lafer Eileen M, Rangamani Padmini, Stachowiak Jeanne C

机构信息

University of Texas at Austin, Department of Biomedical Engineering.

University of California San Diego, Department of Mechanical and Aerospace Engineering.

出版信息

Nat Phys. 2023 Apr;19(4):574-585. doi: 10.1038/s41567-022-01924-1. Epub 2023 Jan 30.

Abstract

The organization of actin filaments into bundles is required for cellular processes such as motility, morphogenesis, and cell division. Filament bundling is controlled by a network of actin-binding proteins. Recently, several proteins that comprise this network have been found to undergo liquid-liquid phase separation. How might liquid-like condensates contribute to filament bundling? Here, we show that the processive actin polymerase and bundling protein, VASP, forms liquid-like droplets under physiological conditions. As actin polymerizes within VASP droplets, elongating filaments partition to the edges of the droplet to minimize filament curvature, forming an actin-rich ring within the droplet. The rigidity of this ring is balanced by the droplet's surface tension, as predicted by a continuum-scale computational model. However, as actin polymerizes and the ring grows thicker, its rigidity increases and eventually overcomes the surface tension of the droplet, deforming into a linear bundle. The resulting bundles contain long, parallel actin filaments that grow from their tips. Significantly, the fluid nature of the droplets is critical for bundling, as more solid droplets resist deformation, preventing filaments from rearranging to form bundles. Once the parallel arrangement of filaments is created within a VASP droplet, it propagates through the addition of new actin monomers to achieve a length that is many times greater than the initial droplet. This droplet-based mechanism of bundling may be relevant to the assembly of cellular architectures rich in parallel actin filaments, such as filopodia, stress fibers, and focal adhesions.

摘要

肌动蛋白丝束的形成对于诸如运动、形态发生和细胞分裂等细胞过程是必需的。丝束的形成由肌动蛋白结合蛋白网络控制。最近,人们发现构成该网络的几种蛋白质会发生液-液相分离。类液凝聚物如何促进丝束的形成呢?在这里,我们表明,持续性肌动蛋白聚合酶和束集蛋白VASP在生理条件下会形成类液滴。当肌动蛋白在VASP液滴内聚合时,伸长的丝会分配到液滴边缘以使丝的曲率最小化,从而在液滴内形成富含肌动蛋白的环。正如一个连续尺度计算模型所预测的那样,这个环的刚性由液滴的表面张力平衡。然而,随着肌动蛋白聚合且环变厚,其刚性增加并最终克服液滴的表面张力,变形为线性束。所形成的束包含从其末端生长的长而平行的肌动蛋白丝。重要的是,液滴的流体性质对于束集至关重要,因为更固态的液滴会抵抗变形,阻止丝重新排列形成束。一旦在VASP液滴内形成了丝的平行排列,它会通过添加新的肌动蛋白单体进行扩展,以达到比初始液滴大许多倍的长度。这种基于液滴的束集机制可能与富含平行肌动蛋白丝的细胞结构的组装有关,如丝状伪足、应力纤维和粘着斑。

相似文献

1
Liquid-like VASP condensates drive actin polymerization and dynamic bundling.
Nat Phys. 2023 Apr;19(4):574-585. doi: 10.1038/s41567-022-01924-1. Epub 2023 Jan 30.
2
Liquid-like condensates that bind actin drive filament polymerization and bundling.
bioRxiv. 2024 May 22:2024.05.04.592527. doi: 10.1101/2024.05.04.592527.
3
Liquid-like condensates mediate competition between actin branching and bundling.
bioRxiv. 2023 Jun 26:2023.06.23.546267. doi: 10.1101/2023.06.23.546267.
4
Cooperative bundling by fascin generates actin structures with architectures that depend on filament length.
Front Cell Dev Biol. 2022 Sep 2;10:974047. doi: 10.3389/fcell.2022.974047. eCollection 2022.
5
Liquid-like condensates mediate competition between actin branching and bundling.
Proc Natl Acad Sci U S A. 2024 Jan 16;121(3):e2309152121. doi: 10.1073/pnas.2309152121. Epub 2024 Jan 11.
6
Kinetic trapping organizes actin filaments within liquid-like protein droplets.
Nat Commun. 2024 Apr 11;15(1):3139. doi: 10.1038/s41467-024-46726-6.
7
Arp2/3 branched actin network mediates filopodia-like bundles formation in vitro.
PLoS One. 2008 Sep 29;3(9):e3297. doi: 10.1371/journal.pone.0003297.
9
Reconstitution of the transition from a lamellipodia- to filopodia-like actin network with purified proteins.
Eur J Cell Biol. 2023 Dec;102(4):151367. doi: 10.1016/j.ejcb.2023.151367. Epub 2023 Oct 20.
10
Ena/VASP processive elongation is modulated by avidity on actin filaments bundled by the filopodia cross-linker fascin.
Mol Biol Cell. 2019 Mar 21;30(7):851-862. doi: 10.1091/mbc.E18-08-0500. Epub 2019 Jan 2.

引用本文的文献

2
The rheology and interfacial properties of biomolecular condensates.
Biophys Rev. 2025 Jun 30;17(3):867-891. doi: 10.1007/s12551-025-01326-6. eCollection 2025 Jun.
3
A balance between nucleating and elongating actin filaments controls deformation of protein condensates.
bioRxiv. 2025 Jun 21:2025.06.18.660423. doi: 10.1101/2025.06.18.660423.
4
Cryo-ET of actin cytoskeleton and membrane structure in lamellipodia formation using optogenetics.
iScience. 2025 Apr 24;28(6):112529. doi: 10.1016/j.isci.2025.112529. eCollection 2025 Jun 20.
5
Condensate-membrane interactions shape membranes, tune cytoskeletal assembly, and localize mRNAs.
Curr Opin Cell Biol. 2025 Aug;95:102540. doi: 10.1016/j.ceb.2025.102540. Epub 2025 May 26.
6
Recent advances in nuclear actin research.
Nucleus. 2025 Dec;16(1):2498643. doi: 10.1080/19491034.2025.2498643. Epub 2025 May 4.
7
Live-cell quantification reveals viscoelastic regulation of synapsin condensates by α-synuclein.
Sci Adv. 2025 Apr 18;11(16):eads7627. doi: 10.1126/sciadv.ads7627.
8
The Golgi Rim is a Precise Tetraplex of Golgin Proteins that Can Self-Assemble into Filamentous Bands.
bioRxiv. 2025 Mar 28:2025.03.27.645134. doi: 10.1101/2025.03.27.645134.
9
The mechanobiology of biomolecular condensates.
Biophys Rev (Melville). 2025 Mar 25;6(1):011310. doi: 10.1063/5.0236610. eCollection 2025 Mar.

本文引用的文献

1
Non-specific adhesive forces between filaments and membraneless organelles.
Nat Phys. 2022;18(5):571-578. doi: 10.1038/s41567-022-01537-8. Epub 2022 Mar 24.
2
Ena/VASP proteins in cell edge protrusion, migration and adhesion.
J Cell Sci. 2022 Mar 15;135(6). doi: 10.1242/jcs.259226. Epub 2022 Mar 14.
4
LIMD1 phase separation contributes to cellular mechanics and durotaxis by regulating focal adhesion dynamics in response to force.
Dev Cell. 2021 May 3;56(9):1313-1325.e7. doi: 10.1016/j.devcel.2021.04.002. Epub 2021 Apr 22.
5
Initiation and disassembly of filopodia tip complexes containing VASP and lamellipodin.
Mol Biol Cell. 2020 Aug 15;31(18):2021-2034. doi: 10.1091/mbc.E20-04-0270. Epub 2020 Jun 24.
6
Tuning shape and internal structure of protein droplets via biopolymer filaments.
Soft Matter. 2020 Jun 24;16(24):5659-5668. doi: 10.1039/c9sm02462j.
8
Biomolecular Chemistry in Liquid Phase Separated Compartments.
Front Mol Biosci. 2019 Apr 3;6:21. doi: 10.3389/fmolb.2019.00021. eCollection 2019.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验