Suppr超能文献

基于 Transformer 的丙泊酚和瑞芬太尼靶控输注麻醉深度预测方法。

A Transformer-Based Prediction Method for Depth of Anesthesia During Target-Controlled Infusion of Propofol and Remifentanil.

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2023;31:3363-3374. doi: 10.1109/TNSRE.2023.3305363. Epub 2023 Aug 25.

Abstract

Accurately predicting anesthetic effects is essential for target-controlled infusion systems. The traditional (PK-PD) models for Bispectral index (BIS) prediction require manual selection of model parameters, which can be challenging in clinical settings. Recently proposed deep learning methods can only capture general trends and may not predict abrupt changes in BIS. To address these issues, we propose a transformer-based method for predicting the depth of anesthesia (DOA) using drug infusions of propofol and remifentanil. Our method employs long short-term memory (LSTM) and gate residual network (GRN) networks to improve the efficiency of feature fusion and applies an attention mechanism to discover the interactions between the drugs. We also use label distribution smoothing and reweighting losses to address data imbalance. Experimental results show that our proposed method outperforms traditional PK-PD models and previous deep learning methods, effectively predicting anesthetic depth under sudden and deep anesthesia conditions.

摘要

准确预测麻醉效果对于靶控输注系统至关重要。传统的用于脑电双频指数(BIS)预测的 PK-PD 模型需要手动选择模型参数,这在临床环境中可能具有挑战性。最近提出的深度学习方法只能捕捉一般趋势,可能无法预测 BIS 的急剧变化。为了解决这些问题,我们提出了一种基于转换器的方法,用于使用丙泊酚和瑞芬太尼的药物输注来预测麻醉深度(DOA)。我们的方法采用长短时记忆(LSTM)和门残差网络(GRN)网络来提高特征融合的效率,并应用注意力机制来发现药物之间的相互作用。我们还使用标签分布平滑和重新加权损失来解决数据不平衡问题。实验结果表明,我们提出的方法优于传统的 PK-PD 模型和以前的深度学习方法,可有效预测突然和深度麻醉条件下的麻醉深度。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验