Suppr超能文献

利用相干非线性光学的单像素图像重建

Single-pixel image reconstruction using coherent nonlinear optics.

作者信息

Thomas Matthew, Kumar Santosh, Huang Yu-Ping

出版信息

Opt Lett. 2023 Aug 15;48(16):4320-4323. doi: 10.1364/OL.498296.

Abstract

We propose and experimentally demonstrate a novel, to the best of our knowledge, hybrid optoelectronic system that utilizes mode-selective frequency upconversion, single-pixel detection, and a deep neural network to achieve the reliable reconstruction of two-dimensional (2D) images from a noise-contaminated database of handwritten digits. Our system is designed to maximize the multi-scale structural similarity index measure (MS-SSIM) and minimize the mean absolute error (MAE) during the training process. Through extensive evaluation, we have observed that the reconstructed images exhibit high-quality results, with a peak signal-to-noise ratio (PSNR) reaching approximately 20 dB and a structural similarity index measure (SSIM) of around 0.85. These impressive metrics demonstrate the effectiveness and fidelity of our image reconstruction technique. The versatility of our approach allows its application in various fields, including Lidar, compressive imaging, volumetric reconstruction, and so on.

摘要

据我们所知,我们提出并通过实验证明了一种新型的混合光电系统,该系统利用模式选择性频率上转换、单像素检测和深度神经网络,从受噪声污染的手写数字数据库中可靠地重建二维(2D)图像。我们的系统旨在在训练过程中最大化多尺度结构相似性指数测量(MS-SSIM)并最小化平均绝对误差(MAE)。通过广泛评估,我们观察到重建图像呈现出高质量的结果,峰值信噪比(PSNR)达到约20 dB,结构相似性指数测量(SSIM)约为0.85。这些令人印象深刻的指标证明了我们图像重建技术的有效性和保真度。我们方法的通用性使其能够应用于各个领域,包括激光雷达、压缩成像、体积重建等等。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验