Suppr超能文献

一种用于磁共振图像快速重建的高效轻量级网络。

An Efficient Light-weight Network for Fast Reconstruction on MR Images.

作者信息

Zhen Bowen, Zheng Yingjie, Qiu Bensheng

机构信息

Hefei National Lab for Physical Sciences at the Microscale and the Centers for Biomedical Engineering, University of Science and Technology of China, 230026, Hefei, Anhui, China.

出版信息

Curr Med Imaging. 2021;17(11):1374-1384. doi: 10.2174/1573405617666210114143305.

Abstract

BACKGROUND

In recent years, Deep Learning (DL) algorithms have emerged endlessly and achieved impressive performance, which makes it possible to accelerate Magnetic Resonance (MR) image reconstruction with DL instead of Compressed Sensing (CS) methods. However, a DL-based MR image reconstruction method has always suffered from its heavy learning parameters and poor generalization ability so far. Therefore, an efficient, light-weight network is still in desperate need of fast MR image reconstruction.

METHODS

We propose an efficient and light-weight MR reconstruction network (named RecNet) that uses a Convolutional Neural Network (CNN) to fast reconstruct high-quality MR images. Specifically, the network is composed of cascade modules, and each cascade module is further divided into feature extraction blocks and a data consistency layer. The feature extraction block can not only effectively extract the features of MR images, but also do not introduce too many parameters for the whole network. To stabilize the training procedure, the correction information of image frequency is adopted in the Data Consistency (DC) layer.

RESULTS

We have evaluated RecNet on a public dataset and the results show that the image quality reconstructed by RecNet is the best on the Peak Signal-To-Noise Ratio (PSNR) and structural similarity index (SSIM) evaluation standards. In addition, the pre-trained RecNet can also reconstruct high-quality MR images on an unseen dataset.

CONCLUSION

The results demonstrate that the RecNet has superior reconstruction ability in various metrics than comparative methods. The RecNet can quickly generate high-quality MR images in fewer parameters. Furthermore, the RecNet has an excellent generalization ability on pathological images and different sampling rates data.

摘要

背景

近年来,深度学习(DL)算法层出不穷,并取得了令人瞩目的性能,这使得用深度学习而非压缩感知(CS)方法加速磁共振(MR)图像重建成为可能。然而,到目前为止,基于深度学习的MR图像重建方法一直存在学习参数繁重和泛化能力差的问题。因此,仍然迫切需要一种高效、轻量级的网络来实现快速MR图像重建。

方法

我们提出了一种高效、轻量级的MR重建网络(名为RecNet),它使用卷积神经网络(CNN)来快速重建高质量的MR图像。具体来说,该网络由级联模块组成,每个级联模块又进一步分为特征提取块和数据一致性层。特征提取块不仅可以有效地提取MR图像的特征,而且不会为整个网络引入过多参数。为了稳定训练过程,在数据一致性(DC)层采用了图像频率的校正信息。

结果

我们在一个公共数据集上对RecNet进行了评估,结果表明,在峰值信噪比(PSNR)和结构相似性指数(SSIM)评估标准下,RecNet重建的图像质量是最好的。此外,预训练的RecNet还可以在一个未见过的数据集上重建高质量的MR图像。

结论

结果表明,RecNet在各种指标上比对比方法具有更优的重建能力。RecNet可以用更少的参数快速生成高质量的MR图像。此外,RecNet在病理图像和不同采样率数据上具有出色的泛化能力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验