Suppr超能文献

人类血清代谢组在 EXPOsOMICS 个人暴露监测研究中 3 个月的变化。

Variability of the Human Serum Metabolome over 3 Months in the EXPOsOMICS Personal Exposure Monitoring Study.

机构信息

Division of Environmental Epidemiology, Institute for Risk Assessment Sciences, Utrecht University, Utrecht 3584 CM, The Netherlands.

Swiss Tropical and Public Health Institute, Allschwil 4123, Switzerland.

出版信息

Environ Sci Technol. 2023 Aug 29;57(34):12752-12759. doi: 10.1021/acs.est.3c03233. Epub 2023 Aug 15.

Abstract

Liquid chromatography coupled to high-resolution mass spectrometry (LC-HRMS) and untargeted metabolomics are increasingly used in exposome studies to study the interactions between nongenetic factors and the blood metabolome. To reliably and efficiently link detected compounds to exposures and health phenotypes in such studies, it is important to understand the variability in metabolome measures. We assessed the within- and between-subject variability of untargeted LC-HRMS measurements in 298 nonfasting human serum samples collected on two occasions from 157 subjects. Samples were collected ca. 107 (IQR: 34) days apart as part of the multicenter EXPOsOMICS Personal Exposure Monitoring study. In total, 4294 metabolic features were detected, and 184 unique compounds could be identified with high confidence. The median intraclass correlation coefficient (ICC) across all metabolic features was 0.51 (IQR: 0.29) and 0.64 (IQR: 0.25) for the 184 uniquely identified compounds. For this group, the median ICC marginally changed (0.63) when we included common confounders (age, sex, and body mass index) in the regression model. When grouping compounds by compound class, the ICC was largest among glycerophospholipids (median ICC 0.70) and steroids (0.67), and lowest for amino acids (0.61) and the O-acylcarnitine class (0.44). ICCs varied substantially within chemical classes. Our results suggest that the metabolome as measured with untargeted LC-HRMS is fairly stable (ICC > 0.5) over 100 days for more than half of the features monitored in our study, to reflect average levels across this time period. Variance across the metabolome will result in differential measurement error across the metabolome, which needs to be considered in the interpretation of metabolome results.

摘要

液相色谱-高分辨质谱联用(LC-HRMS)和非靶向代谢组学在暴露组学研究中越来越多地用于研究非遗传因素与血液代谢组之间的相互作用。为了在这些研究中可靠有效地将检测到的化合物与暴露和健康表型联系起来,了解代谢组学测量的变异性非常重要。我们评估了 157 名受试者两次采集的 298 份非禁食人血清样本中,非靶向 LC-HRMS 测量的个体内和个体间变异性。这些样本是作为多中心 EXPOsOMICS 个人暴露监测研究的一部分,大约相隔 107 天(IQR:34)采集的。总共检测到 4294 个代谢特征,184 种独特的化合物可以用高置信度识别。所有代谢特征的中位数组内相关系数(ICC)为 0.51(IQR:0.29),184 种独特鉴定化合物的 ICC 为 0.64(IQR:0.25)。对于这组化合物,当我们在回归模型中包含常见的混杂因素(年龄、性别和体重指数)时,ICC 略有变化(0.63)。按化合物类别对化合物进行分组时,甘油磷脂(ICC 中位数 0.70)和类固醇(0.67)的 ICC 最大,而氨基酸(0.61)和 O-酰基肉碱类(0.44)的 ICC 最低。ICC 在化学类别内差异很大。我们的研究结果表明,用非靶向 LC-HRMS 测量的代谢组在我们研究中监测的超过一半的特征中,在 100 天内相当稳定(ICC>0.5),以反映这一时期的平均水平。代谢组之间的方差将导致代谢组中不同的测量误差,在解释代谢组结果时需要考虑到这一点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2521/10469440/1fbd5d14d3c5/es3c03233_0002.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验