Suppr超能文献

利用递进条件深度图像先验进行增强型 PET 成像。

Enhanced PET imaging using progressive conditional deep image prior.

机构信息

School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China.

United Imaging Healthcare, Shanghai, People's Republic of China.

出版信息

Phys Med Biol. 2023 Sep 1;68(17). doi: 10.1088/1361-6560/acf091.

Abstract

Unsupervised learning-based methods have been proven to be an effective way to improve the image quality of positron emission tomography (PET) images when a large dataset is not available. However, when the gap between the input image and the target PET image is large, direct unsupervised learning can be challenging and easily lead to reduced lesion detectability. We aim to develop a new unsupervised learning method to improve lesion detectability in patient studies.We applied the deep progressive learning strategy to bridge the gap between the input image and the target image. The one-step unsupervised learning is decomposed into two unsupervised learning steps. The input image of the first network is an anatomical image and the input image of the second network is a PET image with a low noise level. The output of the first network is also used as the prior image to generate the target image of the second network by iterative reconstruction method.The performance of the proposed method was evaluated through the phantom and patient studies and compared with non-deep learning, supervised learning and unsupervised learning methods. The results showed that the proposed method was superior to non-deep learning and unsupervised methods, and was comparable to the supervised method.A progressive unsupervised learning method was proposed, which can improve image noise performance and lesion detectability.

摘要

基于无监督学习的方法已被证明是在没有大量数据集的情况下提高正电子发射断层扫描 (PET) 图像质量的有效方法。然而,当输入图像与目标 PET 图像之间的差距较大时,直接进行无监督学习可能具有挑战性,并且容易导致病灶检测能力降低。我们旨在开发一种新的无监督学习方法,以提高患者研究中的病灶检测能力。我们应用深度渐进学习策略来弥合输入图像和目标图像之间的差距。一步无监督学习被分解为两个无监督学习步骤。第一个网络的输入图像是解剖图像,第二个网络的输入图像是噪声水平较低的 PET 图像。第一个网络的输出也被用作先验图像,通过迭代重建方法生成第二个网络的目标图像。通过体模和患者研究评估了所提出方法的性能,并与非深度学习、监督学习和无监督学习方法进行了比较。结果表明,所提出的方法优于非深度学习和无监督方法,与监督方法相当。提出了一种渐进式无监督学习方法,可提高图像噪声性能和病灶检测能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验