Lee Young Joo, Chen Lihua, Nistane Janhavi, Jang Hye Youn, Weber Dylan J, Scott Joseph K, Rangnekar Neel D, Marshall Bennett D, Li Wenjun, Johnson J R, Bruno Nicholas C, Finn M G, Ramprasad Rampi, Lively Ryan P
School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
Nat Commun. 2023 Aug 15;14(1):4931. doi: 10.1038/s41467-023-40257-2.
Membrane-based organic solvent separations are rapidly emerging as a promising class of technologies for enhancing the energy efficiency of existing separation and purification systems. Polymeric membranes have shown promise in the fractionation or splitting of complex mixtures of organic molecules such as crude oil. Determining the separation performance of a polymer membrane when challenged with a complex mixture has thus far occurred in an ad hoc manner, and methods to predict the performance based on mixture composition and polymer chemistry are unavailable. Here, we combine physics-informed machine learning algorithms (ML) and mass transport simulations to create an integrated predictive model for the separation of complex mixtures containing up to 400 components via any arbitrary linear polymer membrane. We experimentally demonstrate the effectiveness of the model by predicting the separation of two crude oils within 6-7% of the measurements. Integration of ML predictors of diffusion and sorption properties of molecules with transport simulators enables for the rapid screening of polymer membranes prior to physical experimentation for the separation of complex liquid mixtures.
基于膜的有机溶剂分离技术正迅速崛起,成为一类很有前景的技术,可提高现有分离和纯化系统的能源效率。聚合物膜在原油等有机分子复杂混合物的分馏或分离方面已显示出潜力。迄今为止,在面对复杂混合物时,聚合物膜的分离性能测定都是临时进行的,且尚无基于混合物组成和聚合物化学性质来预测性能的方法。在此,我们将基于物理知识的机器学习算法(ML)与传质模拟相结合,创建了一个集成预测模型,用于通过任意线性聚合物膜分离含有多达400种组分的复杂混合物。我们通过预测两种原油的分离情况,且预测结果与测量值的偏差在6 - 7%以内,从而通过实验证明了该模型的有效性。将分子扩散和吸附特性的ML预测器与传输模拟器相结合,能够在对复杂液体混合物进行物理实验之前快速筛选聚合物膜。