Department of Computer Science, UCLA, Los Angeles, CA, USA.
Department of Computer Science, Courant Institute of Mathematical Sciences, New York University, New York, NY, USA.
Nat Commun. 2023 Aug 15;14(1):4936. doi: 10.1038/s41467-023-40346-2.
Our knowledge of non-linear genetic effects on complex traits remains limited, in part, due to the modest power to detect such effects. While kernel-based tests offer a versatile approach to test for non-linear relationships between sets of genetic variants and traits, current approaches cannot be applied to Biobank-scale datasets containing hundreds of thousands of individuals. We propose, FastKAST, a kernel-based approach that can test for non-linear effects of a set of variants on a quantitative trait. FastKAST provides calibrated hypothesis tests while enabling analysis of Biobank-scale datasets with hundreds of thousands of unrelated individuals from a homogeneous population. We apply FastKAST to 53 quantitative traits measured across ≈ 300 K unrelated white British individuals in the UK Biobank to detect sets of variants with non-linear effects at genome-wide significance.
我们对复杂性状非线性遗传效应的了解仍然有限,部分原因是检测此类效应的能力有限。虽然基于核的检验方法为检验遗传变异与性状之间的非线性关系提供了一种通用的方法,但目前的方法不能应用于包含数十万个人的生物库规模数据集。我们提出了 FastKAST,这是一种基于核的方法,可以检验一组变体对定量性状的非线性影响。FastKAST 提供了校准的假设检验,同时能够分析来自同质人群的数十万无关联个体的生物库规模数据集。我们将 FastKAST 应用于英国生物库中约 30 万无关的白种英国人的 53 个定量性状,以检测在全基因组显著水平上具有非线性效应的变体集。