Suppr超能文献

用于高效内存脉冲神经网络的共享泄漏积分发放神经元

Sharing leaky-integrate-and-fire neurons for memory-efficient spiking neural networks.

作者信息

Kim Youngeun, Li Yuhang, Moitra Abhishek, Yin Ruokai, Panda Priyadarshini

机构信息

Department of Electrical Engineering, Yale University, New Haven, CT, United States.

出版信息

Front Neurosci. 2023 Jul 31;17:1230002. doi: 10.3389/fnins.2023.1230002. eCollection 2023.

Abstract

Spiking Neural Networks (SNNs) have gained increasing attention as energy-efficient neural networks owing to their binary and asynchronous computation. However, their non-linear activation, that is Leaky-Integrate-and-Fire (LIF) neuron, requires additional memory to store a membrane voltage to capture the temporal dynamics of spikes. Although the required memory cost for LIF neurons significantly increases as the input dimension goes larger, a technique to reduce memory for LIF neurons has not been explored so far. To address this, we propose a simple and effective solution, EfficientLIF-Net, which shares the LIF neurons across different layers and channels. Our EfficientLIF-Net achieves comparable accuracy with the standard SNNs while bringing up to ~4.3× forward memory efficiency and ~21.9× backward memory efficiency for LIF neurons. We conduct experiments on various datasets including CIFAR10, CIFAR100, TinyImageNet, ImageNet-100, and N-Caltech101. Furthermore, we show that our approach also offers advantages on Human Activity Recognition (HAR) datasets, which heavily rely on temporal information. The code has been released at https://github.com/Intelligent-Computing-Lab-Yale/EfficientLIF-Net.

摘要

脉冲神经网络(SNNs)因其二进制和异步计算方式,作为节能型神经网络受到了越来越多的关注。然而,其非线性激活函数,即泄漏积分发放(LIF)神经元,需要额外的内存来存储膜电压,以捕捉脉冲的时间动态。尽管随着输入维度的增大,LIF神经元所需的内存成本会显著增加,但目前尚未探索出一种减少LIF神经元内存的技术。为了解决这个问题,我们提出了一种简单有效的解决方案——高效LIF网络(EfficientLIF-Net),它在不同层和通道之间共享LIF神经元。我们的高效LIF网络在实现与标准SNNs相当准确率的同时,为LIF神经元带来了高达约4.3倍的前向内存效率和约21.9倍的反向内存效率。我们在包括CIFAR10、CIFAR100、TinyImageNet、ImageNet-100和N-Caltech101在内的各种数据集上进行了实验。此外,我们还表明,我们的方法在严重依赖时间信息的人类活动识别(HAR)数据集上也具有优势。代码已发布在https://github.com/Intelligent-Computing-Lab-Yale/EfficientLIF-Net

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c7b/10423932/a4cce6440fa1/fnins-17-1230002-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验